INFORMÁTICA
PARA A EDUCAÇÃO BÁSICA

Um currículo para escolas
INFORMÁTICA
PARA A EDUCAÇÃO BÁSICA
Um currículo para escolas

Coordenação
Tom van Weert

Produzido por grupo de trabalho da
International Federation for Information Processing (IFIP),
sob patrocínio da UNESCO

Membros do grupo de trabalho:
Ulrich Bosler (Alemanha), Sam Gumbo (Zimbábue),
Harriet Taylor (Estados Unidos), Zoraini Wati Abas (Malásia),
Charles Duchâteau (Bélgica), Raymond Morel (Suíça),
Peter Waker (África do Sul)

Edição brasileira

Coordenação e revisão técnica
Maria de Fátima Ramos Brandão
Departamento de Ciência da Computação da
Universidade de Brasília (UnB)

Tradução
Luiz Aristides Rios

Brasília, 1997
PRESIDENTE DA REPÚBLICA
Fernando Henrique Cardoso

MEC
MINISTRO DA EDUCAÇÃO E DO DESPORTO
Paulo Renato Souza
SECRETÁRIO DE EDUCAÇÃO A DISTÂNCIA
Pedro Paulo Poppovic
DEPARTAMENTO DE INFORMÁTICA NA EDUCAÇÃO A DISTÂNCIA
Cláudio Francisco Souza Salles

UNIVERSIDADE DE BRASÍLIA
João Carlos Todorov, reitor
INSTITUTO DE CIÊNCIAS EXATAS
Gerson Henrique Pfitscher
DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Maria de Fátima Ramos Brandão

UNESCO
DIRETOR-GERAL DA UNESCO
Federico Mayor
REPRESENTANTE DA UNESCO NO BRASIL
Jorge Werthein
CONSELHEIRO DE INFORMÁTICA E TELEMÁTICA
Cláudio Menezes
A edição brasileira de Informática para a educação básica - Um currículo para escolas é uma parceria da UNESCO com a Secretaria de Educação a Distância do MEC e a Universidade de Brasília, por intermédio de seu Departamento de Ciência da Computação, com apoio do Centro de Seleção e de Promoção de Eventos - CESPE.

O lançamento acontece em momento muito oportuno: o governo brasileiro, por meio da Secretaria de Educação a Distância - SEED, acaba de lançar o Programa Nacional de Informática na Educação - Proinf, que até o final de 1998 deve propiciar treinamento a cerca de 30 mil professores e a instalação de uma Rede Nacional de Informática para a Educação, com uma capacidade adicional de 100 mil computadores interligados.

Este trabalho já foi editado em inglês, francês, russo e espanhol. A edição em língua portuguesa será difundida não só no Brasil, mas em toda a Comunidade dos Países de Língua Portuguesa - CPLP.

O currículo aqui proposto foi elaborado, sob os auspícios da UNESCO, por um grupo de trabalho da International Federation for Information Processing - IFIP coordenado pelo professor Tom van Weert, da Universidade de Nijmegen, Holanda, e procura refletir as diversas possibilidades para introdução da informática na escola básica.

Sem risco de perda de coerência, o currículo permite uma certa flexibilidade para adaptar-se a diferentes circunstâncias culturais. A expressão "educação secundária" (secondary education), por exemplo - substituída no título da versão brasileira por educação básica - foi traduzida no texto literalmente, para respeitar a abrangência do currículo de outros países. No Brasil, no entanto, deve ser entendida como educação dirigida às séries finais do ensino fundamental e ao ensino médio.

A UNESCO, a Secretaria de Educação a Distância do MEC, e a Universidade de Brasília estão certas de que esta importante contribuição à comunidade educacional encontrará o aplauso de professores, especialistas em currículo, estudantes, administradores e políticos preocupados em possibilitar as melhores oportunidades educacionais a todos.

Cláudio Menezes
Conselheiro de Informática e Telemática da UNESCO
Título original
Informatics for Secondary Education - A Curriculum for Schools
Tradução autorizada do idioma inglês

Copyright © UNESCO
Paris, 1994

Produzido por um grupo de trabalho da
International Federation for Information Processing (IFIP),
sob patrocínio da UNESCO

Coordenação
Tom van Weert

Membros do grupo de trabalho:
Ulrich Bosler (Alemanha), Sam Gumbo (Zimbábue),
Harriet Taylor (Estados Unidos), Zoraini Wati Abas (Malásia),
Charles Duchâteau (Bélgica), Raymond Morel (Suíça),
Peter Waker (África do Sul)

© Edição brasileira:
UNESCO
MEC/Secretaria de Educação a Distância
Universidade de Brasília / Departamento de Ciência da Computação
Brasília, 1997

Capa: Elizabeth Tognato / Estação das Mídias
Ilustrações originais: Pécub

Ficha Catalográfica

1. Informática na escola. 2. Currículos de informática.
3. Informática na educação. I. Weert, Tom van. II. Brandão,
Maria de Fátima Ramos. III. Rios, Luiz Aristides.
CDU 681. 3:37

As opiniões expressas neste documento são de responsabilidade dos autores e não necessariamente refletem o ponto de vista dos responsáveis pela edição brasileira.
INFORMÁTICA PARA A EDUCAÇÃO BÁSICA
Um currículo para escolas

SUMÁRIO

Introdução - Objetivos Gerais e Justificativas................................. 7
Seção 1 - O Formato Curricular .. 9
Seção 2 - Objetivos Principais .. 11
Seção 3 - As Unidades Curriculares .. 13
Seção 4 - Discussão Geral sobre a Implementação 19

Apêndices

Apêndice 1 - Unidades de Alfabetização em Computação 27
Apêndice 2 - A Informática em Outras Disciplinas 81
Apêndice 3 - Unidades de Nível Geral Avançado 85
Apêndice 4 - Unidades de Nível Profissional Avançado 97
Apêndice 5 - Bibliografia .. 107
INTRODUÇÃO

Objetivos gerais

A Unesco tem como objetivo assegurar que todos os países, tanto desenvolvidos quanto em desenvolvimento, tenham acesso ao que há de melhor em educação, de forma a preparar os jovens a viverem plenamente seu papel na sociedade moderna e contribuam ativamente para a geração de riquezas.

A tecnologia da informação (TI) tornou-se, em um curto espaço de tempo, um dos alicerces básicos da sociedade industrial moderna. O entendimento da TI e o domínio de suas habilidades e conceitos são agora considerados por muitos países como parte do seu núcleo de educação, ao lado da leitura e da escrita. Esta área de estudo recebe o nome abrangente de informática.

Com o intuito de fornecer ajuda concreta e prática a todos os países que integram a Unesco, foi solicitada à Federação Internacional de Processamento de Informação (IFIP) a especificação de um currículo de informática para a educação secundária, com base na experiência de seu grupo de trabalho especializado (GT 3.1) e com subsídios de outros especialistas convidados. O currículo foi projetado de forma a poder ser implementado integralmente em todo o mundo, para estudantes em idade escolar equivalente ao nível secundário.

Todos os projetos governamentais que visam prover uma educação mais abrangente para todos os cidadãos devem levar em conta os recursos financeiros disponíveis. Devido à importância central da tecnologia da informação nas sociedades modernas, a introdução da informática nas escolas secundárias deverá ser prioridade em qualquer agenda política. Este documento fornece uma abordagem prática e realística para o currículo de informática, o qual pode ser adotado rapidamente, a um custo mínimo.

Justificativas para o Aprendizado de Informática

A tecnologia da informação atualmente permeia o ambiente comercial e sustenta o sucesso das modernas corporações, bem como provê os governos com sistemas de serviços a custos efetivos. Ao mesmo tempo, as ferramentas e as técnicas da tecnologia da informação são de grande valor não só nos processos de aprendizagem, como também na organização e na gerência das instituições de ensino.
A tendência de crescimento da demanda por profissionais qualificados fornece uma clara demonstração da necessidade efetiva do aprendizado de informática em todos os níveis (fonte: *Schul Computer Jahrbuch*, Ausgabe '93/94, Metzler Schulbuch Verlag, página 17):

Profissionais de informática (cientistas da computação)
- 1970: 0,5% da população profissional
- 2000: 4% da população profissional

Profissionais de outras disciplinas com qualificação em informática
- 1970: 1,5% da população profissional
- 2000: 20% da população profissional

Profissionais competentes no uso de ferramentas da informática
- 1970: 3% da população profissional
- 2000: 40% da população profissional

Profissionais sem qualificação em tecnologia da informação
- 1970: 95% da população profissional
- 2000: 36% da população profissional

Sob a luz desses claros indicativos, torna-se bastante oportuna a iniciativa da Unesco de promover a introdução da informática em todas as escolas secundárias, em todos os países. A missão do Grupo de Trabalho 3.1 da IFIP de projetar o currículo recomendado foi baseada em sua extensa experiência no efetivo desenvolvimento da informática na educação durante os últimos 25 anos.

Tom van Weert, coordenador do Grupo de Trabalho 3.1, da IFIP, para a Educação Secundária.
Seção 1 - O Formato Curricular

Metas

O grupo de trabalho teve por objetivo produzir um documento que definisse abordagens práticas e realísticas para o currículo de informática na educação secundária, tanto para países desenvolvidos quanto em desenvolvimento, que pudesse ser implementado, de acordo com os recursos existentes, rapidamente e a um custo mínimo.

O currículo foi projetado de forma modular, para que as autoridades em educação pudessem selecionar elementos que sejam adequados a seus objetivos e ao estágio de desenvolvimento de seus países. Uma descrição detalhada de cada objetivo é também fornecida, para que os autores possam produzir materiais didáticos que se adequem à cultura local e às suas condições de desenvolvimento.

Em qualquer sistema educacional, o nível de recursos disponíveis impõe restrições ao grau em que uma nova matéria possa ser introduzida no currículo escolar, especialmente onde apenas as necessidades mais básicas tenham sido atendidas até então. Entretanto, a informática é tão importante para o futuro industrial e à economia de um país que o investimento em equipamento, treinamento de professores e suporte aos serviços necessários para a efetiva implantação de um currículo de informática deveria ter alta ordem de importância em qualquer conjunto de prioridades governamentais. O currículo proposto considerou esses problemas de recursos e especificou os requisitos mínimos para uma efetiva implementação em diferentes circunstâncias.

Considerações Básicas

A introdução de qualquer novo currículo requer cuidadosa preparação, gerenciamento, recursos, treinamento de professores e suporte contínuo. A experiência mostra que a informática não é exceção. Muitos dos seus elementos podem ser melhor inseridos em outras áreas de interesse. O currículo de informática proposto poderia, por exemplo, ter uma parte significativa de seu conteúdo relacionada com matemática, ciências, línguas e estudos sociais. Quando isso não for prático ou oportuno, devido à fase de desenvolvimento (veja abaixo), é recomendável que o currículo seja implantado como uma entidade separada, utilizando, quando possível, outras matérias como ilustração prática e exemplo.

Diferentes países estarão em diferentes fases de desenvolvimento com relação ao uso da tecnologia da informação no governo, no comércio e em toda a sociedade. Três fases distintas podem ser identificadas:

Fase de automação – onde a infra-estrutura essencial está sendo desenvolvida e tanto à conversão dos sistemas existentes quanto o projeto das soluções de informática estão sob responsabilidade exclusiva da equipe técnica.

Fase de informação – caracterizada pelo movimento em direção ao usuário individual ou para o uso das ferramentas de computação, com forte influência do usuário no projeto dos sistemas automatizados.

Fase de comunicação – é o estágio mais avançado caracterizado quando os computadores estão ligados em rede e seu uso reside na colaboração entre os usuários; nessa fase, a informática passa a ser considerada uma parte essencial da infra-estrutura.

Para auxiliar no suporte à implementação em países particulares, o currículo tem sido especificado para países na fase de informação. Algumas adaptações serão necessárias para países em estágios anteriores ou mais avançados de desenvolvimento. Algumas recomendações adicionais sobre problemas de implementação serão fornecidas na Seção 4.
Projeto do Currículo de Informática

O currículo recomendado foi organizado sob a forma de Unidades, agrupadas em Módulos, os quais foram projetados para os diferentes níveis da educação secundária. Dependendo das circunstâncias locais, entretanto, as unidades poderão ser usadas em outros níveis.

Os Módulos de Nível Fundamental são direcionados para aqueles estudantes em idade de decisão entre permanecer no estudo ou assumir um emprego (geralmente, por volta dos 16 anos). As unidades do estágio fundamental são agrupadas adiante em um Módulo Núcleo de Alfabetização em Computação, o qual é considerado de Educação Geral, direcionado para todos os estudantes, juntamente com o Módulo Núcleo Eletivo de Alfabetização em Computação, o qual é também incorporado ao Nível Fundamental Geral. Um comentário é fornecido o qual indica quais dos módulos acima possuem natureza Profissionalizante, apropriada para os estudantes que ingressarão para o trabalho, após a conclusão do Nível Fundamental.

Os Módulos Opcionais de Alfabetização em Computação estão incluídos tanto no Nível Fundamental quanto no Avançado; duas unidades de programação são incluídas, que são os pré-requisitos para aqueles que desejam prosseguir para o Nível Avançado em Informática.

Os Módulos Avançados são direcionados para os estudantes da escola secundária que dedicam todo o seu tempo ao estudo. Aqui também eles são agrupados em Unidades dentro de um Módulo Geral, dirigido aos estudantes que desejam fazer um curso de nível superior, e um Módulo de Ensino Profissionalizante, para os estudantes que ingressam no mercado de trabalho após um período de treinamento técnico.

Terminologia

As definições a seguir serão usadas em todo o trabalho:

Informática: a ciência que lida com o projeto, a implementação, a avaliação, o uso e a manutenção dos sistemas de processamento de informação, incluindo *hardware* (equipamentos), *software* (programas), aspectos organizacionais e humanos, bem como suas implicações industriais, comerciais, governamentais e políticas (Unesco/IBI).

Tecnologia da informação: as aplicações da informática na sociedade.

Tecnologia da informação: a combinação da tecnologia da informática com outras tecnologias a ela relacionadas.
Seção 2 - Objetivos Principais do Currículo de Informática

1. Alfabetização em Computação

Os estudantes deverão ser capazes de usar computadores de forma inteligente e competente na vida diária.

As mudanças radicais recentes no ambiente de trabalho e nas qualificações necessárias para um desempenho efetivo significam que as escolas secundárias deveriam objetivar a inclusão no núcleo de seu currículo principal, pelo menos dos elementos fundamentais da alfabetização em computação como aqui definidos.

Esse objetivo principal deverá, preferencialmente, ser alcançado dentro da Educação Geral no Nível Fundamental.

2. Aplicação das Ferramentas da Tecnologia da Informação (TI) em Outras Áreas de Interesse

Os estudantes deverão ser capazes de usar as ferramentas da tecnologia da informação para resolver problemas rotineiros em outras áreas de interesse.

Esse objetivo principal deverá, preferencialmente, ser alcançado dentro da Educação Geral, nos Níveis Fundamental e Avançado.

3. Aplicação da Informática em Outras Áreas de Interesse

Os estudantes deverão ser capazes de usar métodos e técnicas da informática em combinação com as ferramentas da tecnologia da informação para resolver problemas em outras áreas de interesse.

Esse objetivo principal deve, preferencialmente, ser alcançado dentro da Educação Geral no Nível Avançado.

4. Aplicação da Informática nas Áreas Profissionais

Os estudantes deverão ser capazes de usar métodos e técnicas da informática em combinação com as ferramentas da tecnologia da informação para resolver problemas profissionais no âmbito do comércio e da indústria.

Esse objetivo principal deve, preferencialmente, ser alcançado dentro da Educação Profissionalizante no Nível Avançado.
Objetivos Curriculares no Contexto da Educação Secundária

EDUCAÇÃO GERAL AO NÍVEL FUNDAMENTAL

O foco principal está nos Objetivos Principais 1 e 2, citados na página anterior:

Alfabetização em Computação

Aplicação das ferramentas da TI em outras áreas de interesse

Como complemento, existe opcionalmente um foco de atenção no Objetivo 3:

Aplicação da Informática em outras áreas de interesse

EDUCAÇÃO GERAL AO NÍVEL AVANÇADO

Tendo atingido plenamente o objetivo 1 (Alfabetização em Computação), o foco de atenção passa a ser centrado nos Objetivos Principais 2 e 3:

Aplicação das ferramentas da TI em outras áreas de interesse

Aplicação da informática em outras áreas de interesse

O Objetivo 3 envolve a seguinte sequência de habilidades para a resolução de problemas, utilizando as técnicas e ferramentas da informática, denominadas de modelagem metodológica do problema, projeto da solução algorítmica, programação da solução de forma genérica ou de maneira específica para computadores e uma avaliação da solução proposta. Isso pressupõe que os estudantes tenham desenvolvido um modelo funcional para um sistema de computação e seu ambiente de programação.

EDUCAÇÃO PROFISSIONAL AO NÍVEL AVANÇADO

Aqui, o foco está sobre o Objetivo Principal 4:

Aplicação da informática nas áreas profissionais

Os estudantes deverão ser capazes de, metódicamente, modelar, projetar, conceber e implementar sistemas de informação relativamente simples, com o auxílio de ferramentas orientadas a problema, podendo identificar problemas relativos no gerenciamento do projeto.
Seção 3 - As Unidades Curriculares

EDUCAÇÃO GERAL AO NÍVEL FUNDAMENTAL

Alfabetização em Computação

Objetivos

Os estudantes deverão ser capazes de:
1. manipular o equipamento básico (hardware) e os recursos dos programas (software) de um sistema de computação;
2. usar e controlar as ferramentas de software (programas) orientadas a aplicações específicas;
3. resolver problemas rotineiros de forma algorítmica;
4. identificar as mais importantes consequências sociais, econômicas e éticas da TI.

As Unidades de alfabetização em Computação para o Nível Fundamental foram divididas em dois módulos:

<table>
<thead>
<tr>
<th>Módulo Núcleo</th>
<th>Módulo Núcleo Eletivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1* Equipamento (Hardware)</td>
<td>E1 Projeto e Uso de Bancos de Dados</td>
</tr>
<tr>
<td>C2* Ambiente do Sistema Operacional</td>
<td>E2 Projeto e Uso de Planilhas Eletrônicas</td>
</tr>
<tr>
<td>C3* Tendências em Computação</td>
<td>E3 Carreiras Profissionais em Informática</td>
</tr>
<tr>
<td>C4 Introdução ao Uso do Computador</td>
<td></td>
</tr>
<tr>
<td>C5 Edição de Texto</td>
<td></td>
</tr>
<tr>
<td>C6 Trabalhando com Bancos de Dados</td>
<td></td>
</tr>
<tr>
<td>C7 Trabalhando com Planilhas Eletrônicas</td>
<td></td>
</tr>
<tr>
<td>C8 Trabalhando com Gráficos</td>
<td></td>
</tr>
<tr>
<td>C9 Discussões Éticas e Sociais</td>
<td></td>
</tr>
<tr>
<td>C10 Escolha de Ferramentas de Software</td>
<td></td>
</tr>
</tbody>
</table>

* Estas Unidades poderão ser integradas a outras Unidades Núcleo, quando isso for aplicável.

Como complemento, dois Módulos Opcionais são especificados para uso no Nível Fundamental ou no Nível Avançado:

MÓDULO DE PROGRAMAÇÃO OPCIONAL (VEJA O COMENTÁRIO SOBRE A IMPLEMENTAÇÃO ABAIXO)

P1 Introdução à Programação;
P2 Projeto Top-Down de Programas (do Geral para o Detalhado)

MÓDULO GERAL DE OPÇÕES

Op1 Habilidades em Digitação	Op7 Modelagem e Simulação
Op2 Editoração Eletrônica	Op8 Sistemas Especialistas
Op3 Computadores e Comunicação	Op9 Robótica e Dispositivos de Retroalimentação (feedback)
Op4 Criação Gráfica	Op10 Música
Op5 Trabalhando com Multimídia	Op11 Estatística
Op6 Projeto Assistido por Computador (Computer Aided Design - CAD)	

A especificação plena de todas as unidades acima é fornecida no Apêndice 1
Implementação das Unidades Fundamentais

As recentes mudanças radicais no ambiente de trabalho e nas qualificações necessárias para um desempenho efetivo significam que a escola secundária deveria objetivar pelo menos a inclusão dos elementos existentes no núcleo de alfabetização em computação definido aqui, no núcleo principal de seu currículo.

Isso significa que todas as escolas deveriam ter como meta abordar o Módulo Núcleo do Nível Fundamental para todos os estudantes. O Módulo Núcleo Eletivo fornece uma experiência ampla sobre projeto e uso de banco de dados e planilhas eletrônicas, de especial valor para aqueles que estejam procurando emprego como operadores de entrada de dados ou futuros secretários; bem como inclui um módulo sobre carreiras profissionais em informática.

Unidades de Cursos Profissionalizantes

As unidades de Núcleo Eletivas serão de especial interesse para aqueles estudantes que ingressarão para o trabalho ao final do Nível Fundamental. As Unidades Opcionais seguintes também terão seu valor nos cursos profissionalizantes:

Habilidades em Digitação (Op1), combinada com a *Unidade de Núcleo de Edição de Texto (C5)*, podem conduzir ao emprego de operadores de entrada de dados e secretários, colaborando para a adoção em instituições de ensino profissionalizante que fornecem treinamento adicional para secretários.

Editoração Eletrônica (Op2) e Criação Gráfica (Op4), combinados com a *Unidade de Núcleo de Aplicações Gráficas (C8)*, serão de grande valia para aqueles que desejam trabalhar como designers gráficos ou almejam postos em gráficas e editoras.

Trabalhando com Multimídia (Op5) será de grande auxílio para estudantes que procuram trabalho em publicidade ou em departamentos de relações públicas em grandes companhias.

Projeto Assistido por Computador (Op6) será de importância imediata para aqueles que procuram emprego na área de projetos de engenharia, arquitetura e qualquer outra ocupação que requeira a elaboração de desenhos técnicos.

Informática em Outras Disciplinas

O objetivo 2 de Alfabetização em Computação e os Objetivos Principais 2 e 3 determina que os estudantes sejam capazes de aplicar as Ferramentas da TI e as Técnicas da Informática em outras áreas de interesse. Ao Nível Fundamental, esses requisitos podem ser obtidos pelo uso de uma seleção de exemplos fornecidos no Apêndice 2 – Informática em outras Disciplinas. Os estudantes encontrarão também nesses exemplos um estímulo para o seu próprio trabalho em outras matérias, bem como uma forma de enriquecimento dos seus estudos em informática.

Professores podem buscar a integração do uso dos computadores dentro do domínio das outras matérias, de forma que muitos dos objetivos da Alfabetização em Computação possam ser atingidos sem a necessidade de um curso separado.
Módulo de Programação Opcional

O Objetivo 3 da unidade de Alfabetização em Computação requer que os estudantes tenham a habilidade de resolver problemas rotineiros de forma algorítmica. Isso é mais facilmente obtido pela inclusão das duas unidades P1 e P2 do Módulo de Programação Opcional dentro do Módulo Núcleo do Nível Fundamental. Nesse contexto, a palavra algorítmico deve ser interpretada em um sentido amplo, evitando-se uma definição matemática mais estrita. Dependendo da situação local e da disponibilidade de recursos, esse objetivo pode ser atingido tanto pelo Módulo de Programação quanto pela extração da solução do problema pelo uso de ferramentas de software dentro das Unidades Núcleo, evitando o excesso do tratamento algorítmico formal em um estágio inicial. Como uma alternativa, esse objetivo poderia ser atingido dentro de um Currículo Núcleo em Matemática.

Módulo Geral de Opções

É recomendável que essas Unidades de Alfabetização em Computação sejam usadas ou no Nível Fundamental ou no Avançado, sujeitas aos requisitos específicos do Nível Fundamental descritos anteriormente.

Todas as unidades devem ser estudadas por aqueles que desejam possuir um amplo conhecimento dos computadores na vida moderna, mas temos de reconhecer que os recursos disponíveis podem limitar o grau em que esses estudos poderão ser apoiados em exercícios práticos nas escolas secundárias.

Recursos requeridos

Nos Apêndices, cada Unidade de Descrição indica os recursos mínimos necessários para a implementação com sucesso, fornecendo sugestões para recursos extras opcionais.

UNIDADES DE NÍVEL AVANÇADO

Para complementação, as Unidades de Nível Avançado são aqui especificadas para auxiliar os estudantes mais antigos a percorrerem desde os cursos de nível fundamental até os cursos mais gerais e profissionalizantes de nível superior. Deve ser reconhecido que nem todas as escolas secundárias possuirão pessoal e equipamento que possam prover as unidades avançadas.

Idealmente, os cursos devem ser montados a partir das Unidades Gerais Avançadas GA1-3 e das Unidades Profissionalizantes Avançadas PA1-3, de acordo com universidades e instituições de nível superior, de forma que os créditos avançados obtidos possam ser direcionados para um curso superior em ciência da computação.
EDUCAÇÃO GERAL AO NÍVEL AVANÇADO

Os objetivos da Alfabetização em Computação deverão ser alcançados ao Nível Fundamental.

Aplicação das ferramentas da TI em outras áreas de interesse

Os estudantes deverão ser capazes de usar as ferramentas da tecnologia da informação para solucionar problemas em outras áreas de interesse.

Aplicação da Informática em outras áreas de interesse (para estudantes selecionados)

Os estudantes deverão ser capazes de metodiamente modelar e resolver problemas relativamente complexos usando tanto ferramentas de uso geral como ferramentas orientadas a problemas.

MÓDULOS DE ALFABETIZAÇÃO EM COMPUTAÇÃO

Ambas as Unidades especificadas no Módulo de Programação Opcional (P1 e P2), podem ser estudadas no Nível Fundamental, ou devem ser estudadas em primeiro lugar neste nível. Além disso, de acordo com a disponibilidade de recursos, todas as Unidades do Módulo Geral de Opções (Op1 – 11) poderiam ser estudadas de forma a atingir os objetivos da Alfabetização em Computação neste nível avançado.

MÓDULO GERAL AVANÇADO

Três unidades são especificadas para atingir os objetivos da Educação Geral em Informática ao Nível Avançado:

GA1 Fundamentos de Programação e Desenvolvimento de Software
GA2 Elementos Avançados de Programação
GA3 Aplicações de Modelagem

AS ESPECIFICAÇÕES COMPLETAS DAS UNIDADES ACIMA SÃO FORNECIDAS NO APÊNDICE 3

Aplicação das ferramentas da TI em outras áreas de interesse

Para atingir esse objetivo, os estudantes deverão possuir ampla experiência no uso das ferramentas de TI em outras disciplinas como descritas no Apêndice 2; deverão também ter estudado a unidade GA3, usando a Programação Orientada a Problema (veja a descrição da unidade).

Aplicação da Informática em outras áreas de interesse

Para uma abordagem completa da Informática, os alunos deverão cursar todas as três unidades GA1, GA2 e GA3. Isso habilitará os estudantes a ingressarem na educação superior com conhecimento básico e habilidades em programação de sistemas e no desenvolvimento de software, assim como experiência prática em modelagem.

Implementação

Ambas as unidades (P1 e P2) do Módulo de Programação Opcional devem ser estudadas antes das Unidades Gerais Avançadas em informática.

A unidade GA3 – Aplicações da Modelagem – pode ser estudada em paralelo com a unidade GA2, para que se obtenha um contexto mais realista no trabalho sobre os elementos avançados de programação.
EDUCAÇÃO PROFISSIONALIZANTE NO NÍVEL AVANÇADO

Objetivo

Os estudantes devem ser capazes de, meticulosamente, modelar, projetar, implementar e implantar sistemas de informação relativamente simples com ferramentas orientadas ao problema, podendo ser capazes de identificar problemas relativos ao gerenciamento do projeto.

Três unidades são especificadas para atingir os objetivos da Educação Profissionalizante em Informática no Nível Avançado:

MÓDULO PROFISSIONALIZANTE AVANÇADO

PA1 Sistemas de Informações Comerciais
PA2 Sistemas de Controle de Processos
PA3 Gerenciamento de Projetos

AS ESPECIFICAÇÕES COMPLETAS DAS UNIDADES ACIMA SÃO FORNECIDAS NO APÊNDICE 4

Implementação

Ambas as unidades (P1 e P2) do Módulo de Programação Opcional devem ser estudadas antes de se ingressar no Módulo Profissionalizante Avançado em Informática.

As Unidades recomendadas como de caráter opcional, para estudantes em formação profissional no Nível Fundamental, devem ser consideradas como pré-requisitos.

Um nível técnico superior de competência pode ser obtido pelo estudo da Unidade GA1 a partir do Módulo Geral Avançado, antes de se iniciar a sequência PA1, PA2 e PA3

Ao invés de estudar as unidades PA1, PA2 e PA3 em sequência, a unidade PA3 pode ser usada para gerar um contexto realístico no qual os objetivos das unidades PA1 e PA2 podem ser alcançados.
Relacionamentos entre as unidades

Geral

Aplicação da Informática em outras áreas de interesse

Apêndice 3

GA3*

GA3**

GA2

GA1**

Apêndice 4

PA1

PA2

PA3

Avançado

Fundamental

Aplicação das Ferramentas da TI em outras áreas de interesse

Apêndice 2

Apêndice 2

Alfabetização em Computação

Apêndice 1

C1 - C10

Op1 - Op11

H1 - E3

PA2

P2

*) Programação orientada ao problema

**) Programação de propósito geral

Cursos Profissionalizantes incluem
C1 - C10; E1 - E3; Op 1, 2, 4, 5, 6;
P1 e P2 opcionalmente
Seção 4 - Discussão Geral sobre a Implementação

É fato conhecido que todos os países em desenvolvimento gostariam de adotar um currículo que pudesse ajudá-los a alcançar mais rapidamente os países mais avançados tecnologicamente. Mas é importante que os primeiros passos do processo de desenvolvimento não sejam ignorados totalmente, caso contrário a dependência de suporte técnico de outros países poderá trazer resultados indesejáveis.

As escolas devem estar atentas ao fato de que os desenvolvimentos relacionados com a informática na educação podem ser muito rápidos, e podem também ser separados em fases, similares àquelas do desenvolvimento da tecnologia da informação na sociedade em geral. As descrições a seguir são formuladas para ajudar a determinar que fase de desenvolvimento cada país alcançou, permitindo que eles escolham a ação apropriada. A transição entre as fases é muitas vezes gradual, mas se as escolas e autoridades estão cientes da direção dos seus desenvolvimentos, elas estarão aptas a planejar ações futuras.

Fase de Automação

Apenas alguns poucos computadores estão disponíveis para um grande número de estudantes, frequentemente máquinas que não são de última geração, com baixa velocidade de processamento e baixa qualidade de recursos de impressão. Os programas aplicativos são baseados em linguagens de propósito geral (Basic, Pascal), tipicamente um processador de texto simples, um sistema de arquivos simples e, possivelmente, uma planilha eletrônica simples. Os professores possuem oportunidade limitada de treinamento e suporte externo; muitas vezes a escola possui um único professor especialista. Os computadores podem tanto estar reunidos em um laboratório específico quanto estar espalhados pelas salas de aula. Os estudantes normalmente não têm prioridade no uso das máquinas e possuem pouca ou nenhuma habilidade na digitação. A informática é usualmente um curso separado, com uma integração limitada com outras matérias.

Em termos curriculares, essa fase requer unidades em programação de computadores para alunos selecionados e considerações a respeito dos impactos sociais causados pela introdução de sistemas automatizados. Os recursos disponíveis para as unidades de Alfabetização em Computação podem não estar disponíveis.

As diretrizes do IFP, em Boas Práticas, estão contidas em Integrando a Tecnologia da Informação dentro das Escolas (ver Apêndice 5) fornecem conselhos práticos no planejamento da transição da fase de automação para a próxima, a fase de informação.

Fase de Informação

As escolas estão se tornando usuárias majoritárias dos computadores pessoais, e muitas matérias têm iniciado sua integração com elementos de tecnologia da informação para o suporte ao ensino ou como conteúdo curricular. Políticas nacionais e regionais estão em ação para avaliar e suprir hardware, software, além de informações sobre sistemas e aplicações que circulam livremente.

A principal característica da Fase de Informação é a interação entre a instituição de ensino e a tecnologia da informação. Na fase de Informação, a educação é deslocada da centralização no professor em direção a uma educação centrada no estudante, sob a pressão da sociedade que precisa de estudantes com outras competências; esse deslocamento tem como suporte a tecnologia da informação. Por outro lado, o aumento das capacidades técnicas e o uso da tecnologia da informação impulsionam as instituições de ensino na mesma direção. A Fase de Informação é caracterizada pela integração da tecnologia da informação na educação.
As escolas deverão ter um número bem dimensionado de computadores disponíveis para seus alunos. Esses computadores estarão disponíveis para os estudantes individualmente e estarão espalhados por toda a escola. Os computadores estarão conectados a uma rede local com recursos de armazenamento e impressão. Todo o conjunto de aplicativos avançados deverá estar disponível aos alunos. A equipe da escola, professores e diretores, usam computadores para suporte ao seus trabalhos. Especialistas em manutenção e suporte de computadores estarão disponíveis. Pode haver vários professores que são especialistas no uso de computadores e no ensino de suas disciplinas. Os estudantes já podem ter adquirido as habilidades no uso do computador, tanto em casa quanto na escola. A informática é, em grande parte, integrada em outras disciplinas.

O currículo secundário agora inclui a alfabetização em computação para a maioria dos estudantes, além do uso de ferramentas aplicativas em outras áreas de interesse, bem como métodos e técnicas de informática, tais como a programação.

Maiores informações a respeito dos problemas e possíveis soluções associados à Fase de Informação podem ser encontradas nas diretrizes do IFIP, em Boas Práticas, contidas no *Integrando a Tecnologia da Informação dentro das Escolas* (ver Apêndice 5).

Fase de Comunicação

A Fase de Comunicação está, neste momento, emergindo a partir de experimentos isolados e progressos específicos. Precisamente como a educação irá ser afetada ainda não está claro. De qualquer modo, essa fase será caracterizada pela integração plena da tecnologia da informação no gerenciamento e na transferência do ensino, e no uso das redes de computadores para a comunicação e a colaboração entre os usuários de computador, tanto na escola como nas organizações externas.

Nas escolas, professores e estudantes estarão conectados a uma rede de computação. O currículo do nível secundário irá incluir Conhecimentos Básicos e Gerais em Tecnologia da Informação, que serão mais profundos e abrangentes que os de Alfabetização em Computação. A Tecnologia da Informação estará completamente integrada no processo de aprendizagem. O uso da Tecnologia da Informação estará também totalmente integrado em outras matérias, e o uso criativo avançado fará dessas ferramentas a base dos métodos de modelagem e técnicas da informática. A informática orientada às aplicações será privilegiada.
Evolução da Tecnologia da Informação e da Educação

<table>
<thead>
<tr>
<th>Requisitos</th>
<th>Fase de automação</th>
<th>Fase de informação</th>
<th>Fase de comunicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para saber sobre...</td>
<td>teoria da arquitetura do computador; processamento formal; história da informática e tecnologia da informação</td>
<td>que ferramenta para que tipo de tarefa? (algumas operações, com suas características, são escondidas sob o método de comunicação com o usuário - user interface; nós estamos passando do mundo analógico para o digital - relógios, telefones, CD...)</td>
<td>arquitetura de redes de computadores</td>
</tr>
<tr>
<td>Para fazer com...</td>
<td>editor de texto; compilador; ambiente de programação clássico;</td>
<td>diferentes formas (interfaces) de comunicação (linguagens); ferramentas (ed. texto, planilhas...) usadas de forma criativa e racional</td>
<td>recuperação da informação; colaboração</td>
</tr>
<tr>
<td>Para ter isso feito por...</td>
<td>algoritmos; programação procedural; Logo; Robótica</td>
<td>macros (programação por gravação de ações); programação por processamento de textos, planilhas...</td>
<td>processos orientados para objetos</td>
</tr>
<tr>
<td>Características-chaves</td>
<td>sem uso pessoal; tarefas têm que ser programadas em modo avançado... não gerenciadas por diálogo</td>
<td>usuário individual; tarefas feitas por diálogo; uso de ferramentas</td>
<td>integração; compartilhamento de recursos; fim do computador de uso individual</td>
</tr>
</tbody>
</table>

Metas:
1. Preparar o futuro sem ficar sonhando com o presente
2. Detectar e interpretar características não-mutáveis
Considerações Práticas Adicionais

A informática é uma disciplina essencialmente prática. As habilidades em informática são mais bem adquiridas com o trabalho prático em computador; o desenvolvimento do conhecimento em informática é mais efetivo dentro de um ambiente prático.

Isto impõe problemas quando existem restrições ao fornecimento de equipamentos de suporte aos cursos de informática, porém é importante que isso seja considerado durante a elaboração da estratégia de implementação, lembrando-se da necessidade da experiência prática e dos arranjos necessários para aquisição, gerenciamento e manutenção do equipamento de computação.

Se a quantidade de equipamentos for limitada, pelo menos os professores de informática devem ter sempre acesso a um equipamento de computação, de preferência antecipadamente à introdução dos mesmos para os estudantes. Idealmente isso deve ser associado a um curso formal de treinamento que torne os professores inteiramente familiarizados com o conteúdo e a prática da informática. Muitos professores, particularmente inspirados, podem buscar alternativas para compensar a falta de equipamentos para os estudantes até que o fornecimento destes melhore. Deve-se salientar que o fornecimento de equipamento adequado é uma condição necessária para as escolas que desejam entrar na Fase de Informação.

As Unidades Curriculares indicam exemplos de aplicações que auxiliam a introduzir os objetivos no contexto. Nem todos os países serão capazes de implementar todas as sugestões, mas os professores estarão aptos a procurar exemplos do tipo que se adapte mais proximamente à cultura e à experiência dos seus próprios estudantes.

Centros de Recursos

Muitos países onde a informática está sendo introduzida com sucesso possuem centros de recursos para o treinamento básico de professores, para a aquisição, avaliação e disseminação de equipamentos e programas, tratando também da preparação, impressão e distribuição de material didático para professores e estudantes, idealmente, envolvendo professores nas fases de desenvolvimento e avaliação.

Os centros de recursos podem ser nacionais ou locais. Eles representam bom investimento financeiro no início da introdução do currículo de informática e podem ser importantes fontes contínuas de suporte a professores, à medida que a tecnologia e o país caminham em direção à fase de comunicação. Bons exemplos também podem ser encontrados onde existem facilidades de comunicação entre os professores de computação e o centro de recursos, como através de correio eletrônico, permitindo a atualização dos conhecimentos e habilidades em nível local, sem o custo financeiro e temporal de uma viagem para fora da escola.

Apesar das dificuldades que os professores possam encontrar enquanto planejam introduzir o currículo recomendado, eles podem ser encorajados pelo entusiasmo que muitos alunos trazem para suas aulas de informática. A matéria é contemporânea, estreitamente ligada com o mundo real de hoje e de amanhã, e esse estudo assegura que os estudantes estejam preparados para viver com confiança dentro das regras da sociedade do futuro. Professores que gostarem do desafio de aprender informática para si próprios irão naturalmente capitalizar essa motivação também para seus estudantes.
<table>
<thead>
<tr>
<th>Estágio de Implementação</th>
<th>Inicial</th>
<th>Segundo</th>
<th>Terceiro</th>
<th>Avançado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secundário Júnior</td>
<td>Hardware insuficiente; Poucos professores apropriados; Alguns entusiastas; Nenhum graduado em Ciência da Computação</td>
<td>Mais hardware; Professores para treinar outros em serviço (um por escola); Nenhum graduado em Ciência da Computação</td>
<td>Mais hardware; Mais professores para treinar outros em serviço; Alguns graduados em Ciência da Computação</td>
<td>Mais hardware avançado; Muitos professores com domínio em computação; Vários graduados em Ciência da Computação</td>
</tr>
<tr>
<td>Idades 12 - 16 anos</td>
<td>Todos os alunos Módulo Núcleo Unidades C1 - C10</td>
<td>Todos os alunos Módulo Núcleo Unidades C1 - C10</td>
<td>Todos os alunos Módulo ELETIVO Unidades C1 - C10</td>
<td>Todos os alunos Módulo Núcleo Unidades C1 - C10</td>
</tr>
<tr>
<td>Secundário Sênior</td>
<td>A maioria dos alunos Módulo ELETIVO Unidades C1 - C10</td>
<td>A maioria dos alunos Módulo ELETIVO Unidades E1 - E3</td>
<td>A maioria dos alunos Módulo ELETIVO Unidades E1 - E3</td>
<td>A maioria dos alunos Módulo ELETIVO Unidades E1 - E3</td>
</tr>
<tr>
<td>Idades 16 - 19 anos</td>
<td>Alunos selecionados Módulo ELETIVO Unidades E1 - E3</td>
</tr>
<tr>
<td></td>
<td>Toda a programação será ensinada no nível superior</td>
<td>Os estudantes entram no nível superior com alguma experiência em programação</td>
<td>Os estudantes entram no nível superior com alguma experiência em programação</td>
<td>Alunos podem obter Créditos Avançados para cursos de nível superior enquanto ainda estão na escola</td>
</tr>
</tbody>
</table>

Um exemplo que ilustra como as unidades podem ser introduzidas à medida que os recursos e equipamentos se tornam disponíveis.
Apêndices

Apêndice 1 - Unidades de Alfabetização em Computação 27
Apêndice 2 - A Informática em Outras Disciplinas 81
Apêndice 3 - Unidades de Nível Geral Avançado 85
Apêndice 4 - Unidades de Nível Profissional Avançado 97
Apêndice 5 - Bibliografia .. 107
Apêndice 1
Unidades de Alfabetização em Computação

Conteúdo

<table>
<thead>
<tr>
<th>MÓDULO NÚCLEO</th>
<th>MÓDULO NÚCLEO ELETIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1* Equipamento (Hardware)</td>
<td>E1 Projeto e Uso de Bancos de Dados</td>
</tr>
<tr>
<td>C2* Ambiente do Sistema Operacional</td>
<td>E2 Projeto e Uso de Planilhas Eletrônicas</td>
</tr>
<tr>
<td>C3* Tendências em Computação</td>
<td>E3 Carreiras Profissionais em Informática</td>
</tr>
<tr>
<td>C4 Introdução ao Uso do Computador</td>
<td></td>
</tr>
<tr>
<td>C5 Edição de Texto</td>
<td></td>
</tr>
<tr>
<td>C6 Trabalhando com Bancos de Dados</td>
<td></td>
</tr>
<tr>
<td>C7 Trabalhando com Planilhas Eletrônicas</td>
<td></td>
</tr>
<tr>
<td>C8 Trabalhando com Gráficos</td>
<td></td>
</tr>
<tr>
<td>C9 Discussões Éticas e Sociais</td>
<td></td>
</tr>
<tr>
<td>C10 Escolha de Ferramentas de Software</td>
<td></td>
</tr>
</tbody>
</table>

* Estas unidades podem ser integradas a outras unidades do Módulo Núcleo, quando isso for aplicável.

Módulo Geral de Opções

<table>
<thead>
<tr>
<th>Op1</th>
<th>Habilitades em Digitação</th>
<th>Op7</th>
<th>Modelagem e Simulação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op2</td>
<td>Editoração Eletrônica</td>
<td>Op8</td>
<td>Sistemas Especialistas</td>
</tr>
<tr>
<td>Op3</td>
<td>Computadores e Comunicação</td>
<td>Op9</td>
<td>Robótica e Dispositivos de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retroalimentação (feedback)</td>
</tr>
<tr>
<td>Op4</td>
<td>Criação Gráfica</td>
<td>Op10</td>
<td>Música</td>
</tr>
<tr>
<td>Op5</td>
<td>Trabalhando com Multimídia</td>
<td>Op11</td>
<td>Estatística</td>
</tr>
<tr>
<td>Op6</td>
<td>Projeto Assistido por Computador (CAD)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Módulo de Programação Opcional

<table>
<thead>
<tr>
<th>P1</th>
<th>Introdução à Programação</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>Projeto Top-Down de Programas</td>
<td></td>
</tr>
</tbody>
</table>

O Apêndice 2 fornece exemplos de como as unidades de alfabetização em computação acima podem estimular o uso de computadores em outras disciplinas.
Unidades para Cursos de Nível Avançado especificados nos Apêndices 3 e 4:

MÓDULO GERAL AVANÇADO (APÉNDICE 3)

- GA1 Fundamentos de Programação e Desenvolvimento de Software
- GA2 Elementos Avançados de Programação
- GA3 Aplicações da Modelagem

MÓDULO PROFISSIONAL AVANÇADO (APÉNDICE 4)

- PA1 Sistemas de Informações Comerciais
- PA2 Sistemas de Controle de Processos
- PA3 Gerenciamento de Projetos
Módulo Central

UNIDADE C1 - EQUIPAMENTO (HARDWARE)

Esta unidade deve ser estudada para fornecer os conhecimentos básicos necessários para as outras unidades.

Objetivo

Os estudantes deverão ser capazes de identificar e entender o funcionamento dos principais componentes de um sistema de computação típico, bem como entender e identificar as funções de vários periféricos.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. identificar os principais componentes do hardware em uso (isto é, a CPU, os dispositivos de entrada, de saída e de armazenamento de dados);
2. demonstrar e entender as funções dos principais componentes do hardware em uso;
3. identificar vários dispositivos periféricos (como modem, fax-modem, plotter, scanner);
4. demonstrar um entendimento das funções dos vários dispositivos periféricos;
5. demonstrar um entendimento da rede de computadores em uso (quando aplicável).

Contexto

Os estudantes deverão entender plenamente como os computadores trabalham e quais elementos do computador estão sob o seu controle. Eles não devem ser mistificados pelo computador e devem ser capazes de entender quais elementos podem ser melhorados e por quê. Os alunos devem também conceber que qualquer pessoa inteligente e interessada pode construir o seu próprio computador a partir dos seus componentes.

Conteúdo

Os estudantes devem ser capazes de diferenciar os componentes básicos de um sistema de computação e entender as funções dos vários dispositivos periféricos. Se um periférico não estiver disponível para a demonstração no local de estudo, os alunos devem visitar instalações que o possuam.

Recursos

Recursos mínimos necessários
Diagramas, modelos de componentes básicos de computadores; ilustrações de suas funções; amostras reais ou ilustrações dos dispositivos periféricos.

Recursos extras opcionais
Vídeos, visitas a instalações de computação, kits de montagem de computadores. Programas que mostram o funcionamento da máquina, como o Computerworks. Computador antigo, mas não obsoleto, para desmontar.

Conexões

Com todas as outras unidades.

Metodologia

Explicações com diagramas, vídeo e objetos reais; se necessário, viagens a campo. Experiência prática na montagem de modelos de computador ou em dispositivos periféricos.
Muitos elementos do currículo de TI podem ser incluídos em outras matérias (página 9); por exemplo, estudo de línguas (veja também a página 82).
UNIDADE C2 - AMBIENTE DO SISTEMA OPERACIONAL

Esta unidade deverá ser estudada para fornecer os conhecimentos básicos necessários para as outras unidades.

Objetivo

Os estudantes deverão ser capazes de entender as principais funções do ambiente de um sistema operacional e utilizar suas funcionalidades em relação aos principais programas aplicativos em uso.

Objetivos secundários

Os estudantes devem ser capazes de:
1. demonstrar um entendimento das principais funções do ambiente de um sistema operacional;
2. explorar as características do ambiente do sistema operacional existente (no nível apropriado) com relação aos principais programas aplicativos utilizados;
3. usar as funções de rede de computadores (quando disponível) no nível apropriado.

Contexto

Esta unidade visa familiarizar os estudantes com as noções básicas sobre o sistema operacional do computador (com o mínimo necessário), de forma que eles possam usar o sistema competentemente para realizar suas tarefas.

Conteúdo

Os estudantes devem saber o que é um sistema operacional e quais são os tipos de sistemas disponíveis para os vários modelos de fabricação de computadores. Eles deverão também saber os vários comandos e passos necessários para realizar uma variedade de tarefas, tais como formatar e copiar arquivos, criar diretórios e subdiretórios, gerenciar discos rígidos (*winchesters*), recuperar formatações e deleções efetuadas por engano, salvar e renomear arquivos. Onde aplicável, os estudantes também devem se familiarizar com as funções apropriadas da rede local LAN (*Local Area Network*) ou da rede remota WAN (*Wide Area Network*) disponíveis para eles.

Recursos

Recursos mínimos necessários

Computador, sistema operacional.

Recursos extras opcionais

Manuais de fácil entendimento do sistema operacional em uso. Programas de ensino dirigido (*tutoriais*), tais como *Teach Yourself DOS*, *DOS Tutor*.

Conexões

Com todas as outras unidades.

Metodologia

Demonstração de cada comando do sistema operacional.
Tecnologia da informação (TI) é um dos alicerces da sociedade moderna (página 7)
UNIDADE C3 - TENDÊNCIAS EM COMPUTAÇÃO

Esta unidade deverá ser estudada para fornecer os conhecimentos básicos necessários para as outras unidades.

Objetivo

Os estudantes deverão ser capazes de explicar a situação atual e as tendências em computação em relação às bases e desenvolvimentos do passado.

Objetivos secundários

Os estudantes deverão ser capazes de explicar a situação atual e as tendências em computação em relação às bases e desenvolvimentos do passado em: a) hardware; b) software; c) métodos de operação.

Contexto

Para onde estamos indo? Para que possamos responder a esta pergunta, devemos saber de onde estamos vindo. O mundo da computação será muito diferente até que os estudantes ingressem no mercado de trabalho, mas muitas das mudanças podem ser previstas se estudarmos as tendências de hoje. Além disso, temos de saber algo sobre a história da computação para que possamos entender a terminologia e os procedimentos utilizados atualmente.

Conteúdo

Os estudantes devem entender os principais estágios da evolução dos computadores ao longo dos anos. Isso deve ser visto a partir dos seguintes pontos de vista: história inicial (descobertas, máquinas de calcular, decodificação de sigilo); desenvolvimento da CPU (melhoramentos na velocidade e no poder de processamento em oposição à queda de preço, tamanho e consumo de energia); dispositivos de entrada de dados (desenvolvimento a partir de cartões perfurados até o mouse e reconhecimento de voz); dispositivos de saída de dados (do teletipo até o monitor de vídeo); e dispositivos de armazenamento (dos cartões perfurados até o disco rígido); software (da alteração de chaves e fixação até ferramentas gráficas); processamento de textos e documentos (tornando os “escritórios sem papel”); e métodos de operação (desde o processamento em lote e de tempo partilhado até as redes locais e remotas; processamento multitarefa e distribuído).

Reursos

Reursos mínimos necessários
Fotos e desenhos de computadores antigos.

Reursos extras opcionais
Livros apropriados, recortes de jornal sobre novos lançamentos de hardware e software, artigos de jornal sobre modelos de equipamentos e programas que estão para ser lançados agora ou no futuro, vídeos, exemplos de hardware, software e periféricos.

Conexões

Com todas as outras unidades.

Metodologia

Pesquisa baseada no próprio estudante.
Visita a instalações com equipamentos de computação antigos e recentes.
A tecnologia da informação (TI) é um dos alicerces da sociedade moderna (página 7)
UNIDADE C4 - INTRODUÇÃO AO USO DO COMPUTADOR

Esta unidade é destinada a estudantes que nunca usaram computadores.

Objetivo

Os estudantes deverão ser capazes de usar computadores de forma competente, para produzir coisas simples como pôsteres, faixas, cartazes, convites, calendários e desenhos.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. demonstrar habilidade no uso do computador para produzir pôsteres, faixas, cartazes, convites, calendários e cabeçalhos, utilizando programas adequados para iniciantes;
2. experimentar o prazer e o estímulo no uso de computadores.

Contexto

 Conteúdo

Os professores devem fornecer exercícios direcionados e significativos, de modo que os estudantes tenham um objetivo específico a atingir. Se necessário, os professores podem ilustrar as funções dos vários componentes do computador em termos de entrada, processamento, saída de dados e memória.
Os estudantes deverão saber como operar um sistema de computação e seus periféricos, bem como os comandos necessários para usar os programas, de modo a produzir os resultados solicitados.

RecursoS

RecursoS mínimos necessários
Computadores para pequenos grupos de trabalho; programas de fácil uso como Printmaster, Printshop, Bannermania ou KidPix.
Impressora.

RecursoS extras opcionais
Exemplos de várias criações utilizando os programas escolhidos.
Outros programas, como Storybook Weaver, My Story.

Conexões

Com todas as outras unidades.

Metodologia

Atividades centradas no estudante.
Todas as crianças das escolas secundárias, em todos os países, precisam de fundamentos da tecnologia da informação (página 7)
UNIDADE C5 - EDIÇÃO DE TEXTO

Objetivo

Os estudantes deverão ser capazes de usar processadores de texto hábil e inteligentemente, de forma a produzir documentos legíveis e estruturados para várias disciplinas.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. produzir documentos legíveis;
2. produzir documentos estruturados;
3. produzir vários documentos;
4. discutir as vantagens e desvantagens de um processador de texto em diferentes situações;
5. tomar decisões conscientes sobre qual processador de texto deve ser usado para uma tarefa dada.

Contexto

Ser hábil no uso de um processador de texto é essencial na sociedade moderna. Poucas pessoas utilizam máquinas de escrever se dispõem de um computador, que representa uma melhor alternativa. São claras as vantagens no uso de um processador de texto em comparação com o método usual de escrever em papel ou de datilografar em uma máquina de escrever. Os estudantes devem apreciar o uso dos processadores de texto e serem encorajados ao uso destes para realização de seus deveres escritos. O objetivo não é treinar digitadores qualificados ou secretários, mas sim o conhecimento de um processador de texto e a habilidade no teclado, que são de grande valia para quem está procurando emprego.

Conteúdo

Os estudantes deverão primeiramente aprender a usar o processador de texto sob a supervisão de um professor, que deverá demonstrar e enfatizar como é simples o seu uso. Os estudantes deverão começar a digitar um exercício simples, porém significativo. Eles deverão saber como utilizar vários recursos (como negrito, itálico, sublinhado, margens justificadas, centralização, texto sobrescrito, subscrito, tipologia, cabeçalhos e rodapés) fornecidos pelo processador de texto e, onde possível, serem capazes de usar recursos adicionais, tais como inserção de textos, corretores ortográficos, corretores gramaticais, dicionários convencionais, de sinônimos e de antônimos.

Atividades significativas em um processador de texto incluem a elaboração de cartas pessoais ou comerciais, convites e listas para eventos na escola. Os estudantes deverão estar aptos a usar o processador de texto de forma independente, para produzir vários documentos que sejam legíveis e estruturados de uma forma bem apresentável. Eles deverão também estar aptos a tomar decisões sobre se o uso de um processador de texto para determinada tarefa é o método mais eficiente ou não.

Recursos

Recursos mínimos necessários
Um computador por estudante, software de processamento de textos;
Materiais preparados pelo professor (folhas de exercícios, arquivos de exemplo).
Recursos extras opcionais
Manuais sobre os processadores de texto, de fácil entendimento;
Projeto de telas (datashow), artigos de revistas sobre processadores de textos;
Anúncios e folhetos sobre os processadores de texto disponíveis no mercado.
Conexões

Equipamento (Hardware), Ambiente do Sistema Operacional, Escolha de Ferramentas de Software, Tendências em Computação, Introdução ao Uso do Computador, Digitação, Editoração Eletrônica, Computadores e Comunicação.

Metodologia

Os professores podem criar exercícios simples, a partir de exemplos gravados em disco; inicialmente, eles podem solicitar aos alunos que abram, modifiquem e gravem novamente os arquivos; em seguida, podem aumentar o grau de dificuldade do exercício com o uso de cabeçalhos, rodapés, dicionários comuns e de sinônimos e antônimos, corretores gramaticais e ortográficos.
UNIDADE C6 - TRABALHANDO COM BANCOS DE DADOS

Objetivo

Os estudantes deverão ser capazes de usar, de maneira competente, um banco de dados predefinido.

Objetivos secundários

Os estudantes devem ser capazes de:
1. entender algumas das fases mais relevantes da resolução de problemas;
2. identificar problemas que podem ser resolvidos com o uso de um banco de dados;
3. usar um banco de dados para armazenar informações;
4. esboçar e interpretar as informações de um banco de dados existente, de maneira racional e estruturada.

Contexto

Em uma grande variedade de negócios da vida diária, dados são armazenados em bancos de dados gerenciados por computadores que estão se interligando, como, por exemplo, as reservas de companhias aéreas e as reservas em hotéis. Mais e mais informações sobre as pessoas estão armazenadas em bancos de dados – os estudantes deverão estar atentos para a necessidade de proteção dos dados que possuam caráter pessoal.

Conteúdo

Os estudantes analisam diferentes aplicações do dia-a-dia onde bancos de dados são utilizados. Quando possível, deverão ser usados exemplos nos quais a necessidade de se fazer a proteção de acesso aos dados seja óbvia, tais como: registros de estudantes, informações sobre o fluxo e necessidades de turistas.

Usando exemplos adequados, o professor deve preparar a estrutura apropriada do banco de dados. Os alunos deverão então coletar os dados necessários, por exemplo, por meio de entrevistas para as quais eles devem ter elaborado um questionário próprio. Os dados serão introduzidos no banco de dados. Diferentes listas devem ser produzidas e discutidas.

Durante o processo de uso do banco de dados, os estudantes virão a entender alguns aspectos da resolução do problema, tais como o projeto, a entrada e modificação de dados e consultas ao banco de dados.

Recursos

Recursos mínimos necessários
Um computador por grupo de estudantes.
Bancos de dados simples, contidos dentro de pacotes integrados.
Alguns países fornecem bancos de dados simples para uso educacional ou programas com interfaces amigáveis para o usuário, a preços razoáveis.

Recursos extras opcionais
Um computador por aluno, programas de ensino dirigido (tutorial);
Projetor de telas (datashow), arquivos de cartões.

Conexões

Todas as outras Unidades Núcleo; a Unidade Núcleo Eletiva de Projeto e Uso de Bancos de Dados é a próxima etapa.
Muitos elementos do currículo de TI podem estar inseridos em outras matérias (página 9); por exemplo, ciências (veja também a página 81)
UNIDADE C7 - TRABALHANDO COM PLANILHAS ELETRÔNICAS

Objetivo

Os estudantes deverão ser capazes de entender e fazer uso de planilhas eletrônicas predefinidas.

Objetivos secundários

Os estudantes devem ser capazes de:
1. demonstrar um entendimento do que as planilhas eletrônicas são e o que fazem;
2. usar planilhas eletrônicas já preparadas para mudar valores de variáveis e observar os vários efeitos resultantes;
3. demonstrar um entendimento dos usos das planilhas eletrônicas.

Contexto

Planilhas eletrônicas são ferramentas extremamente úteis para o trabalho individual ou em grupo, com amplo uso na indústria e no comércio. Os estudantes deverão entender o que é uma planilha eletrônica e a facilidade da manipulação de suas variáveis, observando os efeitos dessas variações.

Conteúdo

Os estudantes são apresentados ao conceito de planilha eletrônica e de seus componentes. Eles manipulam a planilha eletrônica por meio da mudança de valores dentro das células, podendo também, talvez, mudar fórmulas para observar os efeitos. Gráficos baseados nos valores introduzidos nas células podem ser gerados automaticamente. Os alunos devem apresentar a capacidade de entender os usos das planilhas nas tarefas diárias.

Recursos

Recursos mínimos necessários
Sistemas de computadores para grupos de trabalho, programa de planilha eletrônica. Planilhas preparadas pelos professores.

Recursos extras opcionais
Planilhas pré-preparadas. Projetor de telas (datashow), programas de ensino dirigido (tutoriais).

Conexões

Com todas as outras Unidades Núcleo; a Unidade Núcleo Eletiva de Projeto e Uso de Planilhas Eletrônicas como próxima etapa.

Metodologia

Demonstrações, atividades práticas.
Muitos elementos do currículo de TI podem estar inseridos em outras matérias (página 9): por exemplo, ciências (veja também a página 81)
UNIDADE 8 - TRABALHANDO COM GRÁFICOS

Objetivo

Os estudantes deverão ser capazes de usar representações gráficas, de forma apropriada.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. identificar o uso das diferentes formas de representação gráfica na vida diária;
2. entender a ligação entre dados e gráficos;
3. converter dados na representação gráfica mais adequada;
4. resumir dados em representações gráficas apropriadas;
5. usar representações gráficas apropriadas para ilustrar documentos;
6. identificar as consequências das diferentes formas das representações gráficas para um mesmo conjunto de dados;
7. identificar casos em que seja apropriado o uso de gráficos e selecionar a forma de apresentação.

Contexto

"Uma figura vale mais do que mil palavras." Uma grande variedade de relatórios é ilustrada por diferentes representações gráficas, por exemplo: gráficos de linha, gráficos de barras ou gráficos de setores (tipo torta). Os dados podem ser exibidos de forma apropriada ou não. Uma representação inadequada pode levar a uma interpretação errônea dos dados originais. A familiaridade com as formas de uso dos gráficos irá auxiliar os alunos a poder mostrar o seu trabalho de forma clara em outras disciplinas e durante a sua vida profissional.

Conteúdo

Os estudantes analisam diferentes aplicações do dia-a-dia onde representações gráficas são usadas. Sempre que possível, exemplos óbvios do uso inapropriado de gráficos devem ser exibidos. Exemplos podem ser encontrados dentro do ambiente escolar, em dados sobre a comunidade, no mundo dos negócios e em jornais diários ou semanais. Dados atuais e dados de anos anteriores podem ser comparados e ilustrados de diferentes formas.

Recursos

Recursos mínimos necessários
Um computador para cada grupo de alunos, com pacotes de programas gráficos.
Módulos gráficos já incluídos em planilhas eletrônicas e pacotes integrados.
Exemplos da indústria e comércio.

Recursos extras opcionais
Programas gráficos avançados.
Projetor de telas (datashow).

Conexões

Com todas as outras Unidades Núcleo; a Unidade Opcional de Criação Gráfica pode ser a próxima etapa.
Muitos elementos do currículo de TI podem estar inseridos em outras matérias (página 9); por exemplo, reconhecimento de voz em diferentes línguas (veja também a página 83)
UNIDADE C9 - DISCUSSÕES ÉTICAS E SOCIAIS

Objetivo

Os estudantes deverão ser capazes de entender as questões sociais, éticas e econômicas associadas ao uso dos computadores.

Objetivos secundários

Os estudantes deverão ser capazes de demonstrar entendimento sobre:
1. os benefícios e prejuízos do uso dos computadores na sociedade em geral;
2. as vantagens e as desvantagens econômicas do uso dos computadores;
3. as questões éticas que são levantadas a partir do uso dos computadores.

Contexto

Os estudantes deverão estar a par do fato de que os computadores nem sempre contribuem de forma positiva para a sociedade. Eles deverão ser capazes de avaliar a seriedade das questões sociais, econômicas e éticas ao longo dos anos. Eles deverão entender que podem haver abusos e comportamentos anti-éticos por parte daqueles que controlam as instalações de informática. Os alunos deverão ser avisados sobre esse tipo de comportamento e deverão saber como isso pode ser corrigido.

Conteúdo

Esperta-se que os estudantes compreendam conceitos básicos sobre crimes em computação, fraude, justiça, propriedade intelectual, privacidade da informação, associação entre automação e desemprego e segurança de dados em computação (roubo, hackers, vírus).

Recursos

Recursos mínimos necessários
Nenhum.

Recursos extras opcionais
Recortes de jornais e histórias sobre crimes em computação.

Conexões

Com todas as outras unidades.

Metodologia

Discussões e pesquisas individuais ou por grupos de estudantes.
Muitos elementos do currículo de TI podem estar inseridos em outras matérias (página 9); por exemplo, matemática (veja também a página 82)
UNIDADE C10 - ESCOLHA DE FERRAMENTAS DE SOFTWARE

Objetivo

Os estudantes deverão ser capazes de analisar diferentes problemas, com a finalidade de decidir qual ferramenta de software é a mais apropriada para a obtenção da solutions desejada.

Contexto

Durante o curso de Alfabetização em Computação, os estudantes adquirem conhecimentos sobre diferentes tipos de ferramentas de software. Ao final do curso, eles deverão ser capazes de selecionar a melhor ferramenta disponível para uma determinada tarefa.

Conteúdo

Esta unidade pode ser estudada de duas formas:
1) os estudantes devem identificar a ferramenta disponível mais adequada para um problema dado; ou
2) os estudantes podem fornecer exemplos de outras aplicações para as ferramentas que eles conhecem.

Deve estar claro que aqui existe uma interseção entre as ferramentas disponíveis, por exemplo, informações podem ser armazenadas ou em um banco de dados ou em uma planilha eletrônica.

Recursos

Nenhum recurso especial é necessário.

Conexões

Com todas as outras unidades.
Diferentes países estarão em diferentes fases de desenvolvimento:
Fase de Informação (páginas 9, 19, 21)
Módulo Núcleo Eletivo

UNIDADE E1 - PROJETO E USO DE BANCOS DE DADOS

Objetivo

Os estudantes deverão ser capazes de criar e usar bancos de dados de maneira competente.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. entender algumas das fases mais relevantes da resolução de problemas;
2. identificar problemas que podem ser resolvidos com o uso de bancos de dados;
3. projetar e criar bancos de dados;
4. obter dados e introduzi-los no banco de dados;
5. extrair e interpretar informações de um banco de dados existente, de maneira estruturada e racional;
6. entender os princípios da proteção de dados pessoais.

Contexto

Esta unidade amplia a experiência obtida no estudo da Unidade Núcleo Trabalhando com Bancos de Dados. A familiaridade com os principais bancos de dados comerciais é uma grande vantagem para quem procura emprego.

Conteúdo

Usando exemplos adequados, os alunos projetam questionários apropriados e coletam os dados. A partir daí, eles primeiro elaboram a estrutura do banco de dados e depois introduzem os dados. Alguns campos poderão ser mal projetados e terão de ser refeitos. O banco de dados terá de ser reestruturado até que um sistema aplicativo esteja estabelecido.

Durante o processo de uso do banco de dados, os estudantes se familiarizarão com alguns dos principais aspectos da solução dos problemas: projeto, entrada e modificação de dados e, então, o uso da aplicação criada. Os principais tipos de dados numéricos e de texto devem ser abordados. No sistema fornecer uma linguagem de programação, como dBase, os principais elementos de programação, como condições e laços de repetição, também devem ser abordados.

As análises do uso de banco de dados podem demonstrar como processos comerciais operam. Por exemplo, teríamos sérios problemas para uma nova companhia aérea, se esta não fizesse uso de um sistema de reserva de passagens. Os alunos poderão também ser familiarizados com bancos de dados de grande porte (Very Large Databases – VLDB) e sistemas de informações geográficas – SIG.

Recursos

Recursos mínimos necessários
Um computador por grupo de estudantes.
Bancos de dados simples, contidos dentro de pacotes integrados.
Alguns países fornecem bancos de dados simples para uso educacional ou programas que tenham interface com o usuário amigável, a preços razoáveis.

Recursos extras opcionais
Gerenciadores de banco de dados que permitam programação, como DBase.
Projetor de telas (datashow).

Conexões

Esta é uma extensão da Unidade Núcleo Trabalhando com Bancos de Dados.
Diferentes países estarão em diferentes fases de desenvolvimento:
Fase de Informação (páginas 9, 19, 21)
UNIDADE E2 - PROJETO E USO DE PLANILHAS ELETRÔNICAS

Objetivo

Os estudantes deverão ser capazes de projetar e criar planilhas eletrônicas para resolver um dado problema.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. identificar quais problemas podem ser resolvidos com o uso de planilhas eletrônicas;
2. entrar e proteger cabeçalhos em linhas e colunas;
3. variar a largura de colunas;
4. alocar valores para colunas;
5. criar fórmulas corretamente;
6. copiar fórmulas;
7. rearranjar entradas em linhas;
8. rearranjar entradas em colunas;
9. importar informações a partir de variadas fontes;
10. exportar informações para variados destinos.

Contexto

A habilidade de criar e usar planilhas eletrônicas tornou-se essencial para todos os envolvidos no gerenciamento financeiro, pesquisa e muitas outras atividades comerciais. As planilhas têm como vantagem o fato da inserção e a manipulação de dados serem mais fáceis que nos bancos de dados, podendo gerar saídas gráficas instantâneas. A habilidade de usar planilhas eletrônicas eficientemente é uma vantagem decisiva para quem busca emprego.

Conteúdo

A criação de uma lista de hobbies da turma pode ser um bom exemplo inicial. Os estudantes devem, então, criar pelo menos uma planilha para esboçar um orçamento no qual o número de situações (what-if) cresça. Se a planilha permitir, o processo inverso também deverá ser utilizado.

Os estudantes deverão criar planilhas simples para receber os dados e calcular o resultado de um experimento ou de uma pesquisa de opinião em, pelo menos, uma outra disciplina. Um bom número de aplicações para as planilhas irá surgir naturalmente em muitas atividades escolares. As planilhas também podem ser usadas na criação de listas nas quais diferentes rearranjos de classificação sejam necessários.

Recursos

Recursos mínimos necessários
Programa simples de planilha eletrônica.
Um computador para cada grupo de trabalho.

Recursos extras opcionais
Impressora.
Vídeo de treinamento ou programa de computador.
Projetor de telas (datashow).

Conexões

Unidades Núcleo relacionadas com Bancos de Dados, Unidade Núcleo Eletiva de Projeto e Uso de Planilhas Eletrônicas. Esta é uma extensão do Módulo Núcleo Trabalhando com Planilhas Eletrônicas.
Diferentes países estarão em diferentes fases de desenvolvimento:
Fase de Comunicação (páginas 9, 20, 21)
UNIDADE E3 - CARREIRAS PROFISSIONAIS EM INFORMÁTICA

Objetivo
Os estudantes deverão ser capazes de descrever as oportunidades profissionais no campo da computação, com as respectivas qualificações necessárias.

Contexto
As descrições dos cargos e tarefas dos profissionais de tecnologia da informação (TI) muitas vezes têm origem em outras áreas, não sendo necessariamente auto-explicativas, mesmo para pessoas que possuam formação em computação. Muitos estudantes contemplarão a possibilidade de uma carreira profissional em TI. Eles deverão ser ajudados a tomar uma decisão consciente.

Conteúdo
Os estudantes deverão pesquisar e relatar quais são as carreiras disponíveis na indústria da computação, incluindo o desenvolvimento de sistemas e a área de serviços.

Recursos

Recursos mínimos necessários
Biblioteca com volumes sobre oportunidades profissionais.

Recursos extras opcionais
Programas de apresentação de seminários.
Equipamentos de projeção.

Conexões
Módulo Núcleo Tendências em Computação.

Metodologia
Essa pode ser uma boa oportunidade para enviar estudantes, individualmente ou em grupos, para além dos limites da escola, a fim de realizarem entrevistas com profissionais de TI e interpretarem as informações obtidas. Eles podem utilizar um processador de textos e uma ferramenta de apresentação para, de forma apropriada, ilustrar os resultados da pesquisa. Gráficos com levantamento de qualificações também podem ser criados. Uma planilha eletrônica pode ser usada para comparar variáveis, por exemplo, investimento em treinamento versus potencial de retorno.
Muitas unidades são de especial interesse para estudantes que almejam ingressar no mercado de trabalho, por exemplo, digitação (páginas 14, 55)
Módulo Geral de Opções

UNIDADE Op1 - HABILIDADES DE DIGITAÇÃO

Objetivo

Os estudantes deverão ser capazes de usar o teclado de forma efetiva e eficiente.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. encontrar todas as teclas sem demora;
2. usar os dedos corretos na digitação.

Contexto

A falta de habilidade para usar o teclado de forma eficiente fatalmente fará do uso do computador uma experiência frustante para os estudantes. Procedimentos incorretos de digitação podem limitar a velocidade com que os estudantes podem armazenar dados, fazendo com que o aprendizado futuro dos procedimentos corretos de digitação se torne mais difícil. O ensino de digitação cega (sem olhar o teclado) não é o objetivo deste curso. Os professores podem ensinar as técnicas de digitação como uma unidade autônoma ou integrada com outras.

Conteúdo

Jogos podem ser usados para familiarizar os estudantes com o teclado; inclusão de programas tutoriais para ensino de técnicas de digitação e atividades de aprendizagem assistida por computador, requer o mínimo do teclado para entrada de dados. A digitação de programas simples e de caráter prático em linguagens de programação para iniciantes, como Logo ou Boxer, podem auxiliar o preparo para posterior uso de linguagens de programação. Tarefas efetuadas em processadores de texto e a elaboração de publicações simples irão dar sentido a esses primeiros exercícios técnicos e levar a uma situação bastante prazerosa, envolvendo outras unidades.

Recursos

Recursos mínimos necessários
Um computador por estudante.

Recursos extras opcionais
Guia de digitação comumente disponível; programas adequadamente projetados para ensino de digitação, como o Mavis Beacon Teaches Typing ou Typing Tutor. Vídeos demonstrativos de destreza na digitação.

Conexões

Unidades Núcleo; Editoração Eletrônica.
Muitas unidades são de especial interesse para estudantes que estão prestes a entrar no mercado de trabalho, por exemplo, editoração eletrônica (páginas 14, 57)
UNIDADE Op2 - EDITORAÇÃO ELETRÔNICA

Objetivo

Os estudantes deverão ser capazes de entender o uso de programas de editoração eletrônica e usá-los de forma hábil, para produzir documentos de aspecto profissional.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. demonstrar entendimento dos softwares de editoração eletrônica;
2. converter um texto oriundo de um processador de textos em um arquivo funcional para um ambiente de editoração eletrônica;
3. produzir documentos de aspecto profissional com a ajuda de um software de editoração eletrônica.

Contexto

Embora o uso de programas de editoração eletrônica (desk top publishing – DTP) não seja tão essencial quanto o uso de processadores de texto, eles são, todavia, ferramentas bastante úteis. Os estudantes deverão saber apreciar as vantagens do uso de programas de DTP para produzir documentos de aspecto profissional. Isso estimulará os alunos na utilização de programas de DTP, onde estes forem mais adequados à criação de documentos com diagramação específica.

Conteúdo

Os alunos devem dominar os principais conceitos e terminologias de DTP, tais como: colunas, ajuste de espaço (kerning), fontes (tipos de letras), tamanhos de fontes e cabeçalhos. Eles também deverão ser capazes de usar um programa de DTP para converter um texto oriundo de um processador de textos em um arquivo funcional para o ambiente de editoração eletrônica.

Os alunos deverão ser ensinados a manipular um arquivo de modo a produzir um documento atrativo. Os alunos poderão ser solicitados a produzir um jornal escolar, com pelo menos duas colunas, e livretos sobre eventos escolares.

Recursos

Recursos mínimos necessários
Um computador por estudante.
Software de editoração eletrônica.
Exemplos de documentos produzidos pelo professor com o programa de DTP.

Recursos extras opcionais
Exemplos de publicações que utilizam técnicas de DTP, panfletos, documentos criados com o programa de DTP.
Manuais de fácil entendimento do programa de editoração eletrônica.

Conexões

Com todas as outras unidades.
Nada é mais motivador para os estudantes do que a comunicação com alunos estrangeiros na língua nativa deles, em outros países (página 59)
UNIDADE OP3 - COMPUTADORES E COMUNICAÇÃO

Objetivo

Os estudantes deverão ser capazes de entender como a combinação de computadores e telecomunicações criou o mais rápido e versátil meio de comunicação.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. identificar os vários métodos de comunicação via computador;
2. demonstrar um entendimento da transferência eletrônica de fundos;
3. enviar e receber mensagens utilizando o serviço de correio eletrônico (e-mail);
4. se comunicar com os quadros de avisos eletrônicos (*bulletin board system – BBS*) para ler e deixar mensagens, enviar (*upload*) e receber (*download*) arquivos;
5. enviar, receber, ler e imprimir fax usando um fax-modem e uma ferramenta de software apropriada.

Contexto

Em uma sociedade informatizada, é cada vez mais necessário obter informações de forma rápida a partir de uma fonte apropriada, e trocar, de modo veloz, informações com outras pessoas espalhadas pelo mundo. Os estudantes deverão conhecer os meios disponíveis e a forma correta de acessá-los.

Conteúdo

Os alunos deverão entender os vários meios de comunicação eletrônica, tais como correio eletrônico, BBSs, transmissão via fax ou modem. Devem também ser capazes de escolher o melhor meio de transmissão e de recepção de dados para cada situação.

Recursos

Recursos mínimos necessários

Um computador por grupo de estudantes; programas de comunicação.
Acesso a sistemas eletrônicos de quadro de avisos (BBSs).
Recursos de correio eletrônico e fax.

Recursos extras opcionais

Projetores de tela e telões.
Diagramas e ilustrações.

Conexões

Com todas as outras unidades.

Metodologia

Experiência prática.
Os pacotes gráficos permitem a criação de ilustrações originais (páginas 61, 84)
UNIDADE Op4 - CRIAÇÃO GRÁFICA

Objetivo

Os estudantes deverão ser capazes de utilizar as ferramentas gráficas apropriadas para criar material visual necessário a uma grande variedade de propósitos.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. analisar uma determinada tarefa e selecionar a melhor ferramenta gráfica entre as várias disponíveis;
2. importar imagens (gráficos) a partir de outras fontes, inclusive utilizando um digitalizador de imagens (scanner), se este estiver disponível;
3. utilizar os programas gráficos para desenhar e animar figuras criadas a partir de outras fontes;
4. produzir material gráfico atrativo e apropriado a cada situação.

Contexto

O mundo é baseado na visão. É muito importante para os estudantes que desejam criar material visual saber como usar o computador e os programas gráficos mais adequados à produção desse material.

Conteúdo

Os alunos deverão conhecer os vários programas gráficos existentes e ser capazes de escolher qual é o melhor para executar uma tarefa específica. Eles devem ser competentes no uso desses programas e na criação de documentos que incluam gráficos para uma grande variedade de outras disciplinas.

Recursos

Recursos mínimos necessários
Um computador por estudante; programas gráficos.

Recursos extras opcionais
Vários periféricos extras de entrada e de saída de dados, exemplos de vários materiais gráficos produzidos por computador.

Conexões

Com todas as outras unidades.

Metodologia

Demonstração, experiência prática, projetos.
Muitas unidades são de especial interesse para os estudantes que estão prestes a ingressar no mercado de trabalho, por exemplo, Trabalhando com Multimídia (páginas 14, 63)
UNIDADE Op5 - TRABALHANDO COM MULTIMÍDIA

Objetivo

Os estudantes deverão ser capazes de planejar e executar apresentações que utilizem multimídia, de forma eficiente.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. gerenciar os componentes estáticos da multimídia, tais como texto com ilustrações;
2. gerenciar os componentes dinâmicos da multimídia, tais como sons com animações;
3. gerenciar a incorporação de som e vídeo gerados a partir de fontes externas, tais como fitas de áudio ou videodiscos.

Contexto

Os estudantes deverão estudar a evolução da tecnologia de multimídia (desde a representação analógica de dados até a digital) e estar aptos a identificar os principais componentes de uma apresentação em multimídia (sons, textos, hipertextos, desenhos, animações). A capacidade de preparar uma apresentação em multimídia é uma habilidade valiosa no mercado de trabalho atual.

Conteúdo

As atividades desenvolvidas são estreitamente dependentes do equipamento disponível, do sistema e das ferramentas de multimídia existentes. Elas devem envolver sons (música), textos (editoração eletrônica), ilustrações (gráficos) e sistemas de comunicação.

Recursos

Recursos mínimos necessários
Um computador apropriado, com dispositivos multimídia internos e externos. Programas aplicativos para desenvolvimento e apresentação.

Recursos extras opcionais
Caixas de som, projetor de vídeo, programas profissionais avançados.

Conexões

Com todas as outras unidades.
Muitas unidades são de especial interesse para os estudantes que estão prestes a ingressar no mercado de trabalho, por exemplo, Projeto Assistido por Computador (páginas 14, 65)
UNIDADE Op6 - PROJETO ASSISTIDO POR COMPUTADOR
(COMPUTER AIDED DESIGN - CAD)

Objetivo

Os estudantes deverão ser capazes de produzir projetos necessários a outras disciplinas, utilizando um pacote apropriado de CAD.

Objetivos secundários

Estes objetivos deverão ser instituídos em cooperação com especialistas em outras disciplinas curriculares. Eles são os mais apropriados para incentivar a habilidade dos estudantes na execução de tarefas que incluem:
1. projetos simples e esboços em duas dimensões;
2. projetos em três dimensões;
3. criar formas e curvas especiais;
4. sombreamento;
5. rotação;
6. inserção de textos.

Contexto

O programa de CAD é o “processador de texto” da prancheta de projetos. Ele permite que mudanças possam ser feitas sem que se tenha de redesenhar todo o projeto existente, permitindo que elementos criados possam ser usados repetidamente. Isso faz com que, atualmente, seja impossível imaginar um estúdio de projetos gráficos sem um sistema de CAD. Mesmo que os sistemas de CAD disponíveis para escolas não sejam tão sofisticados quanto os utilizados no trabalho profissional, os estudantes serão iniciados nas técnicas e conhecerão as vantagens de um CAD, onde este for aplicável. Experiência com programas de CAD – mesmo que seja com apenas um dos modelos mais simples – pode, por si só, gerar oportunidades de emprego.

Conteúdo

Os estudantes envolvidos em outras disciplinas que requerem o uso de pranchetas para projeto gráfico deverão passar pela experiência de fazer o mesmo trabalho com um programa de CAD.

Recursos

Recursos mínimos necessários
Um computador para cada estudante.
Um pacote de programas simples para CAD.
Uma impressora adequada.

Recursos extras opcionais
Um traçador gráfico (plotter) apropriado.
Telas de grande tamanho.
Programas ou vídeos de treinamento.

Conexões

Projeto e Uso de Planilhas Eletrônicas. A elaboração de uma tabela de materiais que seriam necessários para criar um projeto gráfico é um uso perfeito para planilhas eletrônicas. A conexão entre tamanho, quantidade de material e elaboração do orçamento para o trabalho gráfico cria uma oportunidade para um trabalho avançado com planilhas eletrônicas.
Os estudantes deverão ser capazes de simular situações da vida real, como a poluição de um rio ou o pouso de uma aeronave (página 67)
UNIDADE OP7 - MODELAGEM E SIMULAÇÃO

Objetivo

Os estudantes deverão ser capazes de identificar os principais parâmetros de uma situação real, dar forma ao modelo que lhe é apropriado e explorá-lo, interpretando resultados e determinando como o modelo criado enquadra-se na realidade.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. usar modelos existentes, variando parâmetros relevantes e interpretando os resultados;
2. modificar um modelo existente, variando parâmetros relevantes e interpretando os resultados;
3. modelar situações com pequeno número de parâmetros, explorando o modelo criado e interpretando os resultados.

Contexto

Muitas vezes, ao ensinar ou ao explicar detalhes de um fenômeno na escola, a exposição pode ser feita de uma forma excessivamente deductiva. O manejo, mesmo no nível elementar, da modelagem de uma situação simples leva à comparação entre os aspectos deductivos e a abordagem exploratória (simulação versus modelagem). Esta unidade oferece a oportunidade de se resolver alguns problemas reais, ao invés de se trabalhar apenas com problemas "artificiais". Desse modo, as experiências estabelecem a ponte entre a abordagem experimental e a teórica (formal).

Conteúdo

Uma boa introdução pode ser obtida por meio da simulação e da experimentação que envolvem problemas já resolvidos (com um modelo existente). Os exemplos incluem decaimento radioativo, mudanças em valores de pH e alterações populacionais. Exemplos de programas existentes são Lemonade e Simulador de Vôo.

A modificação dos modelos existentes, após a execução da simulação para tentar entender as relações mais importantes entre os principais parâmetros, ajuda a esclarecer a base necessária para o entendimento do processo de modelagem real. Exemplos possíveis incluem o balanceamento entre oferta e demanda, efeitos de poluição e o controle de uma empresa.

A partir de observações concretas, muitas vezes visuais, os alunos podem construir um esboço do sistema que lhes permita a reprodução do comportamento observado, de uma forma mais adequada.

Os estudantes poderão fazer uso de planilhas eletrônicas ou de outra ferramenta especial de modelagem, se esta estiver disponível.

Reursos

Reursos mínimos necessários
Um computador para cada grupo de estudantes; um programa de planilha eletrônica.

Reursos extras opcionais
Programas comerciais existentes, como Simearth, Simlife, Simcity.
Ferramentas específicas com interfaces gráficas inspiradas em sistemas dinâmicos (Stella, Modus, Extend).
Ferramentas específicas que lidam com cálculos numéricos ou simbólicos (Mathematica, Derive, Matlab, Maple).
Conexões

Esta unidade pode representar o primeiro passo em direção à Unidade Geral Avançada Aplicações de Modelagem.

Metodologia

Embora muitas abordagens diferentes sejam possíveis, dependendo da escolha e das ferramentas disponíveis, é essencial, ao se ensinar esta unidade no Nível Fundamental, limitar-se a modelos simples, mesmo em se tratando de situações complexas.
UNIDADE Op8 - SISTEMAS ESPECIALISTAS

Objetivo

Os estudantes deverão ser capazes de criar e demonstrar o uso de um sistema especialista.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. manusear sistemas especialistas criados por outros;
2. usar ferramentas de software adequadas à criação de sistemas especialistas que possam ser usados em outras disciplinas;
3. identificar situações em que o uso de sistemas especialistas seja apropriado.

Contexto

A criação de sistemas especialistas é uma excelente forma de ensino. Embora o produto final possa ser de uso limitado, o processo de criação do sistema especialista direciona a mente do aluno para os problemas relevantes – possivelmente como nenhuma outra atividade possa fazê-lo.

 Conteúdo

Várias disciplinas irão propiciar diferentes oportunidades para sistemas especialistas. Esses sistemas podem variar desde tarefas simples, como mudar e classificar uma forma regular, até tarefas complexas, como a classificação de exemplares botânicos ou mesmo a previsão do tempo, efetuando o cálculo das probabilidades existentes entre várias possibilidades.

Recursos

Recursos mínimos necessários
Um computador para cada grupo de estudantes.
Sistemas especialistas simples.

Recursos extras opcionais
Impressora.

Conexões

Sistemas especialistas avançados usualmente permitem a importação de dados a partir de bancos de dados ou planilhas. Onde a saída indica probabilidade, ela poderá ser apresentada na forma gráfica. Criar o seu próprio sistema especialista é uma excelente tarefa de programação.

Metodologia

É bastante apropriado o trabalho em pares ou grupos de alunos. As discussões sobre as regras envolvidas nos sistemas especialistas são uma excelente forma de aprendizado.
Os estudantes deverão ser capazes de operar robôs simples (página 71)
UNIDADE Op9 - ROBÓTICA E DISPOSITIVOS DE RETROALIMENTAÇÃO (FEEDBACK)

Objetivo

Os estudantes deverão ser capazes de operar robôs simples e usar dispositivos de feedback simples.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. controlar um aparelho robotizado específico;
2. identificar as situações nas quais dispositivos com feedback sejam úteis;
3. usar um dispositivo de feedback simples.

Contexto

Esta unidade é uma forma de ligação com a produção industrial de um país. O número de robôs e de dispositivos com feedback está crescendo rapidamente, com consequências no mercado de trabalho e nas qualificações das pessoas contratadas pelos empregadores. Os estudantes deverão ter um entendimento sobre a operação de robôs, como eles vêm sendo cada vez mais usados em: a) situações de perigo; b) melhoramentos na qualidade de produtos e c) redução dos custos de mão-de-obra.

Conteúdo

Os estudantes devem usar programas simples, ou com interfaces com o usuário previamente preparadas, para controle de robô. Eles também poderão tentar construir um dispositivo de robô simples.

Os alunos poderão usar dispositivos de feedback e sensores simples em experimentos em outras matérias, como microfones em Física ou termômetros e medidores de pH em Química.

Recursos

Recursos mínimos necessários
Um dispositivo robô programável simples – com seu próprio teclado ou conectado ao computador – para cada grupo de estudantes.
Dispositivos sensores de feedback simples que possam agir como entrada para programas apropriados.

Recursos extras opcionais
Robô, com controle por hardware ou software.
Hardware e Equipamento para construir robôs na escola.
Ferramentas como LEGO-LOGO, Fischertechnik.
Vários kits com o equipamento e os programas necessários estão disponíveis, como os da IBM e da Brüderbund Labkits.

Conexões

Equipamento, Tendências em Computação, Discussões Éticas e Sociais, Programação.
Os estudantes deverão ser capazes de criar e tocar música utilizando hardware e software (página 73)
UNIDADE Op10 - MÚSICA

Objetivo

Os estudantes deverão ser capazes de criar composições, partituras e arranjos musicais requeridos pela disciplina, usando os equipamentos e os programas apropriados.

Objetivos secundários

No nível requerido pela disciplina, os estudantes deverão ser capazes de:
1. explorar o uso dos equipamentos e programas apropriados para tocar músicas, modificar e imprimir partituras;
2. demonstrar domínio no uso de equipamentos e programas apropriados para compor peças musicais;
3. demonstrar domínio no uso de equipamentos e programas apropriados para fazer arranjos musicais.

Contexto

Programas já disponíveis permitem que partituras musicais possam ser escritas e editadas utilizando-se o computador da mesma maneira que um pacote de processamento de textos pode ser usado para editar um documento. A música pode ser executada e ouvida por meio de equipamentos adequados. Os alunos que necessitarem escrever partituras deverão constatar que o uso do computador facilita o processo. Eles deverão também saber como usar os softwares apropriados e tirar vantagens para seu uso pessoal.

Conteúdo

O ensino de música não é o objetivo do curso de informática. Antes desta unidade, os alunos deverão ser capazes de identificar a correlação entre partitura e música. Eles deverão ser capazes de modificar um acorde existente com a finalidade de obter um efeito determinado ou desejado. Eventualmente os alunos poderão compor partituras originais no computador com arranjos de suas composições para diferentes instrumentos, sempre usando o computador.

Recursos

Recursos mínimos necessários
Computador, programas para criação musical.

Recursos extras opcionais
Conexão MIDI e os equipamentos associados.

Conexões

Equipamento, Ambiente do Sistema Operacional, Habilidades de Digitação, Edição de Texto.

Metodologia

Experiência prática.
Os estudantes deverão ser capazes de utilizar pacotes estatísticos simples (página 75)
UNIDADE Op11 - ESTATÍSTICA

Objetivo

Os estudantes deverão ser capazes de usar pacotes estatísticos simples, no nível requerido por outras disciplinas.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. selecionar a seção correta de um pacote estatístico e efetuar a entrada de dados;
2. utilizar o resultado obtido no grau de profundidade exigido pela disciplina específica.

Contexto

O ensino de estatística não é o objetivo do curso de TI. Entretanto, como os estudantes utilizam estatística em outras disciplinas, eles deverão estar aptos a manipular programas estatísticos simples e a gerar resultados que eles possam interpretar no contexto existente.

Conteúdo

Esta unidade é mais apropriada para o ensino na fase mais avançada do curso secundário. As disciplinas que são mais indicadas para utilizar esta unidade são economia, matemática, ciências agrárias, biologia e ciências sociais. A complexidade e o volume do trabalho estatístico irão depender inteiramente do que for requerido pelas outras disciplinas.

Recursos

Recursos mínimos necessários
Um computador para cada grupo de estudantes.
Programas estatísticos simples.

Recursos extras opcionais
Impressora.
Vídeos ou programas de treinamento.

Conexões

Muitos pacotes estatísticos permitem a importação de dados a partir de planilhas eletrônicas e exportam dados para pacotes gráficos.

Metodologia

Os alunos que já tiveram de fazer cálculos estatísticos manualmente irão sempre desejar usar um programa de computador para este propósito no futuro.
Os estudantes devem adquirir habilidade em resolver problemas diários de forma algorítmica (páginas 15, 77)
Módulo de Programação Opcional

UNIDADE P1 – INTRODUÇÃO À PROGRAMAÇÃO

Objetivo global da unidade

Os estudantes deverão ser capazes de projetar, programar e avaliar algoritmos simples para problemas orientados a tarefas elementares (o termo “algoritmo” deve ser interpretado em seu sentido mais amplo).

Contexto

A programação, neste nível, não é uma matéria técnica; de um modo geral, isso significa transformar uma tarefa que você pode “fazer por si próprio” por outra que pode ser “feita por outros”. Isso quer dizer que a descrição de uma tarefa é um procedimento que, se for feito com um detalhamento completo e suficiente, permite que esta seja repetida de forma precisa por qualquer outra pessoa ou aparelho.

A “automação” de uma tarefa é o que chamamos de programação, algumas vezes de programação algórimática – uma das principais características da informática. A forma algórimática de pensar e de resolver um problema é necessária quando usamos ferramentas complexas e sofisticadas, como planilhas eletrônicas, gerenciadores de bancos de dados, sistemas operacionais e até mesmo processadores de textos.

A programação é uma forma rápida, específica e adequada para que os estudantes ganhem experiência na solução de problemas. O objetivo não é treinar “miniprogramadores”, mas levar os alunos a terem contato com a forma de pensar dos programadores. Com essa meta em mente, a sintaxe e outras características específicas das linguagens de programação não são importantes e devem ser ensinadas apenas como a base mínima necessária para o trabalho. Os professores deverão enfatizar os aspectos metodológicos na resolução de problemas. A programação, nesta unidade, é mais um meio do que um fim a ser atingido em si mesmo.

Resumo do conteúdo da unidade

Esta unidade contém três atividades principais: projeto de um algoritmo orientado para tarefa (resolução algórimática do problema), tradução do projeto em um programa (programação) e dar vida ao programa (implementação). Essas três atividades irão aparecer sempre de forma sucessiva e estreitamente ligadas. Apesar das descrições seguintes tratarem cada atividade separadamente, a ordem da apresentação abaixo não necessariamente dita a ordem em que elas serão ensinadas.

1. PROJETO DE UM ALGORTIMO ORIENTADO PARA TAREFA (RESOLUÇÃO ALGÓRIMICA DO PROBLEMA)

Objetivos

Os estudantes deverão estar aptos a:
1. descrever e especificar a tarefa especifica a ser realizada;
2. desenvolver um algoritmo efetivo e eficiente que execute a tarefa identificada, aplicando um determinado método padrão simples.

Conteúdo

Os alunos têm de identificar e experimentar os passos envolvidos no processo de solução de problemas, aplicando estratégias simples para sua resolução, em um determinado formato, de modo a indicar soluções para problemas simples, retirados de seu próprio cotidiano. Exemplos de problemas apropriados são: simulações simples de lances em jogos de dados, arremesso de moedas, cálculos sobre fórmulas de áreas e volumes, fluxo de empréstimos e depósitos monetários, movimentos de uma tartaruga em um plano.
Ixmaxplos de possíveis ambientes de programação são: Logo-Tartaruga, Basic, Pascal ou um ambiente para controlar um dispositivo físico (por exemplo, um robô). Quando os alunos já tiverem adquirido alguma perícia, eles poderão aprender a dividir as tarefas que serão automatizadas em subtarefas menores, dentro de uma tarefa maior e fundamental, com nomes apropriados e de significado claro.

2. **TRADUÇÃO DO PROJETO EM UM PROGRAMA (PROGRAMAÇÃO)**

Objetivos

Os estudantes deverão estar aptos a:
1. transformar os seus algoritmos simples em programas de computador, com o uso de linguagens procedurais.
2. produzir um programa legível, de fácil entendimento, que use interação com o usuário.

Conteúdo

Os professores devem escolher problemas simples que apenas requeiram dos alunos o uso de operações simples de entrada, saída e atribuição de dados em uma linguagem de programação. Onde aplicável, os estudantes deverão determinar tipos e utilizações apropriadas para as variáveis, selecionando para elas nomes adequados e significativos, que representem de forma clara suas funções dentro dos programas.

Os alunos não devem ser forçados a utilizar um processador de texto em separado para digitar os seus programas, devendo preferencialmente utilizar aqueles fornecidos com a implementação da linguagem.

3. **DAR VIDA AO PROGRAMA (IMPLEMENTAÇÃO)**

Objetivos

Os estudantes deverão estar aptos a:
1. usar o ambiente de programação oferecido para entrar, editar, compilar, corrigir os erros, aprimorar e executar os programas construídos;
2. fornecer uma descrição escrita útil e significativa sobre o comportamento interno e externo de seus programas.

Conteúdo

Os estudantes devem armazenar e recuperar os programas em disco, para uso futuro e modificações. Eles deverão aprender a diferenciar entre erros de sintaxe e erros de execução, identificando as possíveis causas de cada tipo de erro. Os alunos deverão testar os seus próprios programas com massa de dados fornecida ou criada por eles, para determinar a correção e as limitações do programa, aprendendo a fazer saídas impressas e cópia em papel do código de origem.

Os professores deverão assegurar-se de que a documentação produzida para todos os programas seja clara e adequada, de forma que outros usuários possam entender a operação dos programas e efetuar futuras modificações necessárias.

Recursos

Recursos mínimos necessários

Um computador para cada dois estudantes (um pode planejar, enquanto o outro digita o código e efetua os testes).
Linguagens de programação simples, preferencialmente com interface gráfica, como o Logo.

Conexões

Esta unidade, junto com a unidade P2, é uma preparação essencial para os Módulos Geral e Profissional no Nível Avançado.
UNIDADE P2 – PROJETO *TOP-DOWN* DE PROGRAMAS
(DO GERAL PARA O DETALHADO)

Objetivo global da unidade

Os estudantes deverão ser capazes de projetar, programar e avaliar algoritmos estruturados para problemas que requeram uma abordagem *top-down*.

Contexto

Após as primeiras experiências com o projeto e a programação de algoritmos simples na unidade P1 – Introdução à Programação –, os alunos aprenderão a usar a abordagem *top-down*, utilizando as mesmas ferramentas de projeto e ambiente de programação. Quando os problemas começarem a ficar mais complexos, a necessidade da abordagem *top-down* tornar-se-á evidente. A programação *top-down* é o método normal pelo qual os programas comerciais são projetados e produzidos.

Resumo do conteúdo da unidade

A unidade contém três atividades principais: o projeto de algoritmos pelo método *top-down*, tradução do projeto em um programa e dar vida ao programa (implementação). Da mesma forma que na unidade P1 – Introdução à Programação –, essas três atividades irão aparecer sempre de forma sucessiva e estreitamente ligadas. Apesar das descrições seguintes tratarem de cada atividade separadamente, a ordem de apresentação não necessariamente dita a ordem em que elas serão ensinadas.

1. PROJETO *TOP-DOWN* DE ALGORITMO

Objetivos

Os estudantes deverão estar aptos a:
1. descrever e especificar o problema a ser resolvido;
2. desenvolver um algoritmo efetivo e eficiente para solução de um problema, usando a abordagem *top-down*, através de um refinamento sucessivo.

Conteúdo

Primeiramente, o professor coleta alguns problemas complexos para serem resolvidos, no contexto de procedimentos já implementados e disponíveis no sistema (correspondentes aos subproblemas do problema original). Num segundo momento, esses procedimentos serão analisados e reconstruídos pelos estudantes.

Alguns problemas poderiam ser direcionados ao processamento de cadeias de caracteres (*strings*), com o uso das ferramentas oferecidas pela linguagem de programação disponível. Algoritmos desse tipo são importantes, pois tornam evidente que apenas o processamento formal é esperado dos computadores. Exemplos de problemas adequados são: concatenação, contagem do número de palavras em um texto, escrita do texto em sequência invertida, mudança de todas as vogais no texto, procura de palavras no texto.

É importante chamar a atenção para problemas que fogem ao escopo dessas abordagens formais, como, por exemplo: tradução, correção ou resumo de textos.
2. TRADUÇÃO DO PROJETO EM UM PROGRAMA

Objetivos

Os estudantes deverão ser capazes de:
1. entender que o computador processa apenas "objetos formais";
2. transformar os seus algoritmos em programas de computador com uma linguagem procedural, usando funções e procedimentos formais;
3. produzir um programa legível, de fácil entendimento, que use interação com o usuário.

Conteúdo

É importante que o projeto de algoritmos na forma top-down seja transformado em um programa que tenha procedimentos e funções, para que os estudantes possam apreciar a necessidade dessas construções.

Antes que o programa seja escrito, os alunos devem avaliar, passo a passo, o seu algoritmo em partes, eliminando os erros de cada módulo. Eles deverão criar o seu próprio conjunto de dados para teste, de modo que explorem não apenas as diferentes partes do algoritmo, mas também o algoritmo como um todo.

Os alunos devem usar as seguintes construções de programação: procedimentos, funções, variáveis locais, globais e parâmetros. Devem ser oferecidos procedimentos e funções de manipulação de strings, capazes de agir como ferramentas para a resolução de problemas de processamento de texto.

3. DAR VIDA AO PROGRAMA (IMPLEMENTAÇÃO)

Objetivos

Os estudantes deverão estar aptos a:
1. usar um ambiente de programação padrão para editar, compilar, corrigir os erros e executar os programas construídos;
2. fornecer uma descrição útil e significativa sobre o funcionamento interno e externo dos programas.

Conteúdo

Os estudantes devem armazenar e recuperar os programas em disco, para uso futuro e modificações. Eles devem aprender a diferenciar erros de sintaxe e erros de execução, identificando as possíveis causas de cada tipo de erro.

Os alunos devem testar os seus próprios programas com massa de dados fornecida ou criada para determinar a correção e as limitações dos programas, aprendendo como obter saídas impressas e cópia em disco do código de fonte.

Os professores devem assegurar-se de que a documentação produzida para todos os programas seja clara e adequada, de forma que outros usuários estejam aptos a entender o funcionamento dos programas e a efetuar futuras modificações.

Recursos

Recursos mínimos necessários
Um computador por estudante; linguagens de programação ou ferramentas adequadas.

Recursos extras opcionais
Impressora; projetor de telas.

Conexões

Esta unidade é uma preparação essencial para os Módulos Geral e Profissionalizante no Nível Avançado.
Apêndice 2
A Informática em Outras Disciplinas

A Informática pode ser de valor considerável no ensino de várias matérias do currículo formal, nos níveis fundamental e avançado. Esta seção fornece exemplos os quais os professores desejarão usar por si próprios ou quando promoverem a informática de uma forma mais ampla com outros colegas professores. Os alunos também encontrarão nestes exemplos um estímulo para seus trabalhos em outras matérias, além de enriquecerem os seus estudos em informática.

Os professores podem encontrar meios de integrar o uso de computadores dentro de áreas de interesse, fazendo com que muitos dos objetivos da unidade de Alfabetização em Computação possam ser atingidos sem a necessidade de um curso separado.

Os alunos da unidade de Nível Avançado GA3, Aplicações de Modelagem, irão descobrir que as experiências iniciais do uso do computador em outras disciplinas proporcionam um conhecimento útil para o seu próprio trabalho, além de serem um bom ponto de partida para tópicos mais avançados de técnicas de modelagem.

Ciências naturais

Edição de textos
Os alunos podem utilizar um programa de processamento de textos para escrever os seus relatórios de experimentos e pesquisa.

Editoração eletrônica (desk top publishing - DTP)
Os estudantes podem usar o DTP para produzir documentos de aspecto atrativo, especialmente aqueles que requerem uma combinação de textos e gráficos.

Aplicativos gráficos
Os alunos podem usar programas gráficos para preparar ilustrações, com ou sem rótulos (labels), que podem ser depois importadas para documentos DTP; tais aplicativos podem substituir os métodos usuais de preparação de desenho à mão livre.

Planilhas eletrônicas
Os alunos podem usar planilhas para tabular e calcular o resultado dos experimentos, ou na manipulação de variáveis para observar certos efeitos que assim são demonstrados mais clara ou rapidamente. Os estudantes também poderão solicitar que gráficos sejam desenhados a partir de valores digitados dentro da planilha eletrônica.

Os professores poderão preparar gabaritos (templates) para auxiliar os estudantes novatos no uso das planilhas eletrônicas, ou preparar planilhas que já possuam os valores introduzidos para, a partir daí, ilustrar os efeitos da manipulação das variáveis como uma forma apropriada de trabalhar com simulação e modelagem.

Bancos de dados
Os alunos podem criar bancos de dados tais como as características químicas dos elementos na tabela periódica, características de plantas, insetos e mamíferos, podendo interrogar o banco de dados para procurar relacionamentos e características comuns. Como primeiro passo, os professores podem preparar os bancos de dados e os alunos podem adicioná-los.

Robôs e dispositivos de feedback
Os estudantes podem construir robôs e utilizar a robótica para executar experimentos, particularmente em Física. Usando sondas mecânicas, de temperatura, ou outras para monitorar experimentos, alimentando as leituras diretamente em uma planilha eletrônica, é mais fácil obter resultados confiáveis e isso faz a classe de alunos trabalhar de forma mais realista. Existem muitas ferramentas e programas que recolhem as leituras, interpretam-nas e apresentam-nas graficamente.
Comunicação
Os alunos podem usar computadores para se comunicar com outros estudantes em uma rede local, ou com estudantes de outras escolas, tanto locais quanto distantes. Isso permite que dados sejam agrupados e compartilhados com outros. Como exemplo, podemos citar taxas de pluviosidade, os valores de pH da chuva em diferentes países ou a identificação de insetos que só existam em uma região (endêmicos).

Reconhecimento de voz
Em Física e algumas vezes em Biologia, os alunos podem usar dispositivos externos para gravar sons e usar a análise computadorizada para estudar padrões e ondas sonoras.

Sistemas especialistas
Os sistemas especialistas escritos por estudantes podem ter pequena valia, mas os alunos aprendem tanto a partir do desenvolvimento dos sistemas que isso deve ser feito sempre que haja recursos disponíveis. Um sistema especialista bom, dentro do escopo dos estudantes de nível avançado, pode prever o resultado obtido quando dois elementos químicos diferentes são misturados.

Modelagem e simulação
O desastre nuclear de Three-Mile Island pode ser simulado em sala de aula, sem qualquer perigo para os estudantes. Enquanto os alunos estiverem executando ou testemunhando a demonstração, a repetição da experiência acompanhada da modelagem muitas vezes fornece a eles uma visão mais ampla e avançada.

Programas de apresentação
Os estudantes podem usar programas de apresentação para gerar uma sequência de slides para seus projetos, experimentos e pesquisas, com vistas a exibi-los para grandes grupos em sala de aula.

Matemática
Planilhas eletrônicas
Desde a execução de cálculos repetidos até a visualização de padrões em certas manipulações numéricas, as planilhas podem desempenhar um importante papel no ensino de matemática em quase todos os níveis.

Programas gráficos
Podem-se encontrar pacotes gráficos especializados que mostram a representação gráfica de qualquer função matemática fornecida. Também existem pacotes de programas que permitem que problemas de geometria sejam apresentados no monitor de vídeo.

Estatística
O uso de ferramentas e programas adequados poupa horas de cálculos estatísticos e provê importantes análises. Os complicados cálculos manuais gerados a partir de exemplos fornecidos da vida real são difíceis de manipular; com o computador, situações reais podem ser analisadas mais prontamente.

Projeto Assistido por Computador (Computer Assisted Design – CAD)
Pacotes de CAD podem ser usados em alguns aspectos de geometria, como substitutos dos pacotes gráficos.

Modelagem e simulação
Os alunos podem usar pacotes de modelagem simples, como o Mathematica, para terem uma idéia real do comportamento de funções matemáticas.

Línguas

Edição de textos
O uso mais comum é a criação de cartas e outros documentos. Os professores e estudantes podem criar textos-desafios, nos quais algumas palavras podem estar faltando ou o texto precise de pontuação, plural ou outro tempo verbal. Arranjar uma história em ordem cronológica ou completar uma história apenas rascunhada são outras possíveis aplicações.
Editoração eletrônica (Desk Top Publishing – DTP)
Além da criação de jornais, revistas e pôsteres, os alunos vão gostar muito de poder usar ilustrações prontas (clipart) para criar documentos de aspecto agradável.

Programas gráficos
Ao tornarem-se aptos a ilustrar o que produzem, os alunos aumentam o seu ímpeto de escrever. Os alunos irão apreciar os gráficos que já estão prontos para o uso e a capacidade de criar ilustrações de alta qualidade sozinhos. Alguns programas combinam o poder dos pacotes simples de DTP com recursos gráficos sofisticados.

Robótica
O comando de robôs por meio do uso de comandos em uma língua estrangeira é uma das tarefas mais gratificantes para os estudantes, mesmo com um vocabulário limitado. Por exemplo, o Logo é disponível em inglês, francês, espanhol, grego, alemão, português e em inúmeras outras línguas.

Comunicação
Nada parece motivar mais os estudantes do que a comunicação com alunos estrangeiros na língua nativa deles, em países distantes. A disponibilidade do correio eletrônico, de sistemas de quadros de avisos (BBSs), de conferência com uso de textos e videoconferência tem tornado a comunicação instantânea possível. Em locais onde não há acesso à telecomunicação eficiente e barata, a comunicação por meio de discos enviados pelo correio com documentos criados em processadores de texto é uma alternativa viável.

Reconhecimento de voz e síntese
Com os programas adequados, os alunos podem comparar sua própria pronúncia com os modelos sintetizados, podendo observar tanto aspectos visuais quanto orais.

Sistemas especialistas
Dadas as ferramentas corretas, os estudantes podem escrever programas que usem as regras de uma linguagem desenvolvida para sistemas especialistas ou manipular a própria linguagem. Por exemplo, um sistema especialista simples pode ser escrito para mudar substantivos, em inglês, do singular para o plural.

Programação
Com o uso de linguagens apropriadas (Logo, Boxer, Lisp, Smalltalk), os alunos podem facilmente escrever os seus próprios sistemas especialistas, como indicado acima.

“Quarta Capa de Livros” – O Encorajamento para Leitura
Este é o exemplo de um projeto interdisciplinar que pode ajudar a atingir os objetivos da unidade de Alfabetização em Computação e integrar os estudantes e professores da escola com cientistas da informação e bibliotecários.

O projeto
Os estudantes escrevem um texto de quarta capa que seja o resumo de um livro recentemente lido, com o propósito de despertar em outros o desejo de lê-lo (isso não deve ser marketing!).

Digitando o resumo
Os estudantes devem usar um processador de textos para preparar a resenha, adicionando informação sobre si próprios, sua classe e sua escola, além de palavras-chaves, número do ISBN e o próprio resumo, os quais serão usados pelas bibliotecas da escola e da cidade. Uma atividade complementar poderia ser a seleção do livro do mês.

Criação de bancos de dados
Os estudantes podem coletar contribuições de outros alunos da mesma classe ou de classes e escolas diferentes, dentro de sua região, para criar um banco de dados das resenhas dos livros.

Uso de banco de dados
Os alunos podem consultar o banco de dados sobre a próxima leitura escolhida, efetuar o pedido do livro para a biblioteca ou acessar o banco de dados do centro de documentação da escola.
CIÊNCIAS SOCIAIS

Edição de textos
Em qualquer matéria que requeira a elaboração de relatórios, ensaios e outros documentos, pode-se fazer um bom uso de processadores de textos, de pacotes gráficos e de programas de editoração eletrônica. Estudantes de nível mais avançado estarão aptos a extrair, a partir de uma grande variedade de fontes, dados para elaboração de apresentações multimídia.

Planilhas eletrônicas e bancos de dados
No estudo das ciências sociais, planilhas eletrônicas e bancos de dados servem ao mesmo propósito: habilitar os estudantes a sistematizar e a organizar informações. Por exemplo, os alunos poderão fazer uso de planilhas eletrônicas para elaborar calendários, listas de eventos, países e pessoas envolvidas. Essa lista pode ser organizada por data, por país ou pelos nomes das pessoas. Algumas listas são de grande valia para os estudos. Estudantes jovens gostam de coletar informações e sentirão prazer em configurar e em criar um banco de dados, por exemplo, sobre os fatos relativos aos países da Comunidade Econômica Européia.

Comunicação
Os alunos podem usar o correio eletrônico e o envio de disquetes para se comunicarem com residentes de países que possuam importância histórica ou geográfica.

Estatística
Especially quando estudam Geografia em um nível avançado, os alunos podem necessitar de um pacote estatístico.

Sistemas especialistas
Os estudantes de Geografia poderão escrever sistemas especialistas sobre problemas como as condições necessárias para que uma nova vila se estabeleça e cresça como um centro comercial regional.

ARTE

Programas gráficos
Alguns pacotes gráficos permitem a criação de ilustrações originais. Porém, professores de arte estão mais interessados na forma pela qual eles podem criar padrões gráficos, padrões complementares e padrões com variedade visual. Por exemplo, no projeto têxtil os computadores habilitam os estudantes a obter o resultado final com menos esforço do que com qualquer outro método.

Editoração eletrônica (DTP)
No projeto de pôsteres e de outros materiais impressos, a DTP assegura produtos de nível profissional em um tempo mínimo, com a opção de reutilizar ou modificar o projeto conforme o desejado.

Programação
As linguagens de programação com interface gráfica, como o Logo, permitem a criação de padrões complexos com mínimo esforço. As partes gráficas de tais linguagens poderiam ser incluídas em cursos de design.

MÚSICA

A unidade de opções gerais Op10 fornece um tratamento completo desta disciplina
Apêndice 3
Unidades de Nível Geral Avançado

Este Módulo de Nível Avançado é específico para as escolas secundárias que possuam os equipamentos e programas necessários, bem como professores treinados, aptos a conduzir as unidades.

Idealmente, os cursos deverão ser construídos sobre as unidades GA1 a GA3, em entendimentos com universidades e instituições de nível superior, de modo que créditos avançados possam ser obtidos e direcionados para um curso de ciência da computação de nível superior.

Objetivo

Os alunos deverão ser capazes de projetar e implementar sistemas técnicos baseados em computadores os quais são modelos de problemas reais, usando uma abordagem algorítmica de solução de problemas.

Contexto

As unidades GA1 e GA2 juntas representam um conjunto padrão de cursos que são comumente ministrados tanto em nível secundário como em nível técnico superior, como base de um estudo de Informática. A profundidade e a abrangência do curso e a extensão da prática devem ser ajustadas para adequarem-se à população estudantil, de forma que os alunos sejam capazes de ingressar no Ensino Superior com os conhecimentos básicos e habilidades de programação de sistemas e no desenvolvimento de software.

Os alunos que tenham adquirido essa experiência desejariam aplicá-la na programação e modelagem de problemas complexos em áreas como robótica, inteligência artificial, computação gráfica e matemática. A unidade GA3 provê a base necessária à capacidade de efetuar tais modelagens.
Módulo Geral Avançado

UNIDADE GA1 - FUNDAMENTOS DE PROGRAMAÇÃO E DESENVOLVIMENTO DE SOFTWARE

Objetivo

Os estudantes deverão ser capazes de projetar e programar sistemas relativamente pequenos, baseados em computadores, os quais representem problemas orientados a processos.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. seguir os princípios básicos de engenharia de software;
2. analisar meticulosamente problemas orientados a procedimentos, até conseguir decompor em passos procedurais;
3. aplicar técnicas mais ou menos formais para projetar algoritmos efetivos e estruturas de dados;
4. codificar e implementar programas e subprogramas (módulos) usando um ambiente de programação de propósito geral;
5. usar um modelo funcional de um sistema de computação e de seu ambiente de programação.

Contexto

Os alunos precisam desenvolver habilidades fundamentais tanto para a informática, como disciplina, como para o desenvolvimento de programas, em todos os níveis. Isso inclui o uso de métodos mais ou menos formais para a análise de problemas e projetos de programas, com ênfase na criação de programas não muito complexos que reúnem as especificações dadas e utilizem uma interface relativamente simples.

A atenção específica deve ser dada aos tipos de problemas que podem ser programados usando tipos de dados simples e estruturados (caracteres, inteiros, reais, arrays, etc.); estruturas básicas de controle (sequência, seleção e repetição); e uma linguagem de programação de alto nível bloco estruturado.

A ênfase está na modelagem completa por meio da abstração do processo em estudo (decomposição, top-down em subprocessos e subprogramas). Os métodos de análise, as estratégias de projeto e o ambiente da linguagem de programação utilizados devem dar suporte a esse tipo de modelagem.

Conteúdo

Os estudantes solucionarão vários problemas, gradativamente mais complexos. Os problemas são esboçados a partir de aplicações reais, as quais os alunos possam rapidamente entender e modelar. Pequenos problemas individuais são escolhidos para ensinar como usar novas operações algorítmicas em conjunto com elementos que já são conhecidos. Entretanto, alguns problemas mais abrangentes devem ser incluídos, de modo que os alunos possam utilizar de maneira integrada tudo o que foi aprendido.

Análise do problema

Os alunos aplicam técnicas informais e técnicas formais elementares para analisar problemas simples, orientados a processos em várias áreas de aplicação, e descrevê-los em termos de passos de subprocessos.

Projeto

ALGORITHMOS: os alunos projetam soluções modulares por meio da análise top-down e refinamento passo a passo. Eles escolhem e especificam estruturas de dados e algoritmos adequados ao projeto. As estruturas de dados e as estruturas de controle usadas no algoritmo devem ser
diretamente relacionadas com as estruturas primitivas da linguagem de programação estruturada.

Interface com o Usuário: os estudantes projetam interfaces com o usuário para os seus algoritmos, sob a forma de um conjunto de telas interligadas e dispostas hierarquicamente (árvore).

Programação: o algoritmo e a estrutura modular são codificados em uma linguagem de programação de uso geral.

Implementação e Avaliação: o código é então concretizado na forma de programa executável em um sistema de computação, utilizando-se um ambiente de programação disponível. Os alunos devem testar e remover os erros encontrados, além de identificar as limitações do programa.

Tópicos

Engenharia de software
processo de resolução de problemas, ciclo de vida de software

Análise
especificação de entrada, processamento e saída
identificação de passos e módulos
especificação informal das condições anteriores e posteriores

Projeto
refinamento sucessivo modular top-down
interfaces simples e úteis

Algoritmos
estruturas de controle simples e aninhadas
estruturas de dados simples
estrutura do código, útil e legível
algoritmos elementares de ordenação e procura
recursão simples
projeto de massas de dados para teste

Implementação
execução, testes e remoção de erros
documentação
teste bottom-up
implementação incremental
Avaliação
comparação informal de algoritmos
limitações do projeto e do programa

Ambiente de programação
componentes de hardware
programas do sistema e compiladores
representação dos dados armazenados

Elementos de linguagem de programação
tipos de dados simples e estruturados de linguagens, tipos definidos pelo usuário
avaliação de expressões e funções padronizadas de biblioteca
estrutura de sequência, controle e iteração
interações simples e arquivos de entrada e saída do tipo texto
subprogramas e parâmetros
variáveis locais e globais, escopo de variáveis e subprogramas
Recursos

Recursos mínimos necessários
Versão de uma linguagem de programação de alto nível bloco estruturada, como suporte ao projeto modular de programas e que contenha os tipos de dados e as estruturas de controle necessários.

Livros-textos de nível introdutório com exemplos de aplicações do uso da linguagem de programação. Textos mais recentes, sobre introdução à informática ou sobre modelos de organização da ciência da computação, os quais tenham sido desenvolvidos na prática e que estejam dentro dos objetivos desta unidade.

Recursos extras adicionais
Textos adicionais sobre organização de computadores, sistema operacional, compiladores e tradutores de linguagens, representação interna da informação, engenharia de software e ciclo de vida dos programas.

Conexões

Introdução à Programação (P1);
Programação Top-Down (P2);
Sistemas de Informações Comerciais (PA1).

Metodologia

Os conceitos e as habilidades incluídos nesta unidade são aqueles que usualmente estão presentes em um primeiro curso de informática para estudantes de nível avançado, os quais alguns países podem achar mais apropriado para instituições de ensino superior do que para escolas secundárias. Esta unidade é bastante extensa e requer um tempo significativo de estudo semanal, estendendo-se desde um semestre para mais de um ano. O tempo necessário depende de experiência prévia e da formação dos alunos: se já estudaram Alfabetização em Computação ou programação em Nível Fundamental. Dependendo dos objetivos do grupo, uma subdivisão da unidade pode ser aconselhável, organizada em torno dos conceitos ou princípios que estão em estudo.

A ênfase nesta unidade deve ser dada sobre as aplicações construídas. Os alunos terão de aplicar técnicas e princípios, começando com problemas elementares e aprimorando suas habilidades para manipular problemas cada vez mais complexos. As habilidades e os conceitos aprendidos nas primeiras lições são constantemente reintroduzidos de modo prático, em novos problemas que envolvem novos conceitos. Exercícios periódicos e projetos que permitam aos alunos a síntese e a integração dos conhecimentos aprendidos também devem ser incluídos.
Diferentes países estarão em diferentes fases de desenvolvimento:
Fase de Informação (páginas 9, 19, 21)
Unidade GA2 - Elementos Avançados de Programação

Objetivo

Os estudantes deverão ser capazes de projetar, programar e avaliar sistemas relativamente complexos, baseados em computadores, que modelem problemas orientados a processos em várias matérias e áreas de aplicação.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. analisar, metodicamente, e modelar problemas relativamente complexos orientados a processos em uma variedade de áreas de aplicação;
2. aplicar análise formal moderadamente avançada, técnicas de projeto e abstração de dados para planejar algoritmos eficientes, tipos abstratos de dados e estruturas de dados relativamente sofisticadas;
3. codificar e implementar programas e subprogramas (módulos) usando um ambiente de programação de uso geral;
4. avaliar e explorar alternativas para o projeto de programas.

Contexto

Os estudantes deverão desenvolver habilidades para resolver problemas cada vez mais complexos e sofisticados em muitas áreas de aplicação. A ênfase deve ser dada a modelagem por meio da abstração de dados (uma técnica importante para melhorar a confiabilidade e a reutilização). Atenção específica deve ser dada aos algoritmos e à estratégia utilizada para simulação avançada, de estruturas de dados lineares e não-lineares para implementação de tipos abstratos de dados.

Conteúdo

Esta unidade estende e complementa a unidade GA1, Fundamentos de Programação e Desenvolvimento de Software. Os alunos irão resolver vários problemas progressivamente mais complexos oriundos de áreas de aplicação reais.

Análise de problemas

Os alunos desenvolvem modelos de problemas relativamente complexos orientados a processos, usando estratégias de projeto, como a modelagem por meio de tipos abstratos de dados. Eles analisam o sistema para determinar os seus elementos de dados básicos e funções a eles associadas que são utilizados como objetos no sistema.

Projeto

Os estudantes desenvolvem tipos abstratos de dados para os objetos identificados, os quais podem ser reutilizados por outros projetistas que trabalhem em situações que envolvam os mesmos objetos. Os alunos planejam a solução para o problema expressando-a em termos de módulos que manipulam objetos de dados abstratos apenas por meio das funções identificadas. Os estudantes deverão criar uma interface de comunicação com o usuário adequada e eficiente.

Programação

Os alunos constroem estruturas de dados sofisticadas na forma linear ou em árvore, para representar tipos abstratos de dados. Também criam as funções necessárias para acessar essas estruturas em linguagens de programação de uso geral, que possuam suporte encapsulamento e ocultação de dados, tanto diretamente como por meio de simulação das abstrações de dados. Os estudantes então codificam os seus projetos na linguagem de programação escolhida.
Implementação
Os programas codificados são implementados e executados em um ambiente de programação. Os alunos primeiramente implementam, testam e verificam a execução dos tipos abstratos de dados e só então passam para a execução do programa inteiro.

Avaliação
Os alunos determinam indicadores de ordem de magnitude para comparar diferentes algoritmos e praticam alguns métodos formais básicos para verificação de programas.

Abordagens alternativas
Quando há tempo disponível, as estratégias de desenvolvimento podem utilizar outros paradigmas, como metodologia orientada a objeto ou a programação lógica, que podem ser explorados se os recursos estiverem disponíveis.

Tópicos

Engenharia de software
Projetos confiáveis e reutilizáveis.

Análise
Istratégias de análise, como análise de fluxo de dados, utilizando estados pré-condicionais e pós-condicionais.
Verificação formal de programas, assertivas e invariantes.

Projeto
Abstração de dados e encapsulamento da informação.
Interface com o usuário efetiva.

Algoritmos
Grafos e algoritmos para grafos.
Encapsulamento de tipos abstratos de dados.
Estruturas e tipos dinâmicos de dados.
Árvores binárias.
Procura em árvores binárias.
Algoritmos avançados de procura.
Algoritmos de classificação eficientes, com ordem não quadrática.
Método de Hashing (função para cálculo de endereços).

Avaliação
Análise de algoritmos para determinação aproximada da ordem de magnitude (de tempo e memória).
Limitações dos algoritmos e problemas insolúveis.
Limites da representação numérica e métodos numéricos simples.

Elementos de linguagens de programação
Armazenamento de dados em listas simples e duplamente encadeadas.
Pilhas
Fitas
Estruturas de dados em tabelas não-lineares.

Opcional
Aplicações em computação gráfica, robótica e inteligência artificial.
Modelagem utilizando programação lógica ou funcional.
Programação orientada a objetos.
Algoritmos de processamento paralelo.
Recursos

Recursos mínimos necessários
Um ambiente de linguagem de programação de alto nível estruturada, que suporte programação modular e abstração de dados.
Livros-textos modernos, de nível intermediário, sobre estrutura de dados e análise de algoritmos, que utilizem um método de abstração de dados.

Recursos opcionais
Ambiente de programação lógica, funcional, orientada a objetos ou de processamento paralelo.

Conexões
Fundamentos de Programação e Desenvolvimento de Software (GA1).

Metodologia

Énfase nos conceitos, teorias e práticas da disciplina, em vez de exaustiva descrição da sintaxe da linguagem. É aconselhável o uso, se possível, da mesma linguagem de programação estruturada em ambas as unidades. A unidade tem um conteúdo tradicional, o qual é descrito em vários textos avançados de estrutura de dados. Os professores e os projetistas do currículo deverão considerar o uso da estrutura desses textos como a base para a definição e a abordagem das subunidades e para o desenvolvimento curricular.
Diferentes países estarão em diferentes fases de desenvolvimento:
Fase de Informação (páginas 9, 19, 21)
UNIDADE GA3 - APlicações DE MODELAGEM

Objetivo

Os estudantes deverão ser capazes de trabalhar em equipe e especificar, modelar meticulosamente e solucionar problemas relativamente complexos.

Objetivos secundários

Os estudantes deverão ser capazes de integrar aos conhecimentos adquiridos previamente habilidades e experiência que os permitam:
1. especificar, modelar meticulosamente e solucionar problemas relativamente complexos, com auxílio de ferramentas de programação de uso geral;
2. especificar, modelar meticulosamente e solucionar problemas relativamente complexos em outras áreas, com auxílio de ferramentas de programação orientadas para essas matérias a problemas;
3. trabalhar em equipes dentro de um projeto comum de modelagem.

Contexto

A habilidade de modelagem é fundamental para a aplicação bem-sucedida das ferramentas de software mais avançadas. Esta Unidade requer dos alunos o uso de vários modelos computacionais, por exemplo, simuladores e jogos; para identificar as decisões de projeto e as simplificações que o projetista deve fazer; e discutir a importância e as consequências de possíveis erros.

Os estudantes devem trabalhar em equipes para procurar respostas às questões do professor envolvendo a criação de modelos nos quais os conceitos, as ferramentas e os métodos da tecnologia da informação ditam as regras. O pensamento na forma algorítmica é uma importante capacidade para concluir com êxito essas tarefas.

Durante o desenvolvimento do projeto, o professor orientará os alunos usando generalizações, indicando problemas na modelagem, no grupo de trabalho e no desenvolvimento do projeto.

Dessa forma, os estudantes estão aptos a integrar aos conhecimentos adquiridos anteriormente, as habilidades e as experiências obtidas das suas experiências em informática e de outras áreas.

Conteúdo

O que é modelagem e quais ferramentas estão disponíveis?
Os alunos trabalham com exemplos de técnicas de modelagem em informática em diferentes áreas de interesse, passando pelas fases do processo de modelagem e identificando as ferramentas clássicas de modelagem. Eles estudam as características de um grupo de trabalho, examinam técnicas de gerenciamento de projetos e avaliam os efeitos de pressões externas sobre o projeto. Os estudantes também são confrontados com exemplos onde a modelagem implica na simplificação da realidade.

Modelagem metódica com o uso de ferramentas apropriadas – o que deve ser feito?
Com uma questão simples como ponto de partida, a descrição do problema é primeiramente expressa em linguagem natural, sendo depois refinada pelo questionamento apropriado e pela definição dos limites da tarefa. Pede-se então aos alunos que apontem os componentes da “realidade a ser modelada” que são relevantes para a construção do modelo e aqueles que podem ser deixados de lado. Eles devem fornecer explicações e justificar suas escolhas sobre os elementos e as estruturas incluídas ou desprezadas.

Os estudantes colocam no papel as especificações precisas do trabalho que deve ser feito e fazem um plano para sua realização. Trabalhando junto com a equipe, eles procuram e escolhem as ferramentas adequadas e as técnicas necessárias para resolver o problema. Após esses passos, eles então projetam e construam a solução executável do problema.
Avaliação de modelos e do processo de modelagem – como foi feito?
Os alunos primeiramente explicam e justificam suas escolhas de ferramentas, técnicas e soluções. Eles então investigam a aproximação da solução com a descrição inicial do problema, refinando sua solução original, se necessário. Nesse estágio, eles discutirão qualquer efeito social ou político que possa surgir a partir de uso de modelos incorretos ou excessivamente simplificados de situações da vida real.

Tópicos para Modelagem com o uso de Ferramentas de Programação Genéricas

O ponto de partida são as informações relativas às técnicas de modelagem, tais como a modelagem entidade-relacionamento. Em seguida, podem ser modeladas situações reais como, por exemplo, crescimento e diminuição (como modelos florestais, jogo da vida, etc.), expansão de doenças, dispersão de poluentes e espéra em filas de atendimento. Primeiro, uma modelagem algorítmica do problema é feita, sendo então implementada em uma linguagem de programação de uso geral.

Outros ricos campos de investigação são:

- Métodos de Pesquisa Operacional: programação linear, problemas de partição e determinação de recursos, problema do caixeiro viajante.
- Probabilidade (lançamento de moedas ou rolagem de dados, loterias e roletas). Por exemplo, um ponto de partida de discussão poderia ser: “Todos sabem o que é uma roleta em um cassino. Você seria capaz de construir uma roleta ‘eletrônica’ em seu computador e provar que, jogando nela, eu teria as mesmas chances de ganhar ou perder caso estivesse jogando em uma roleta da vida real?”
- Problemas gráficos como adjacência, caminhos possíveis, ciclos e melhor caminho possível. Por exemplo: “Este é um mapa simplificado das principais estradas de nosso país. Você poderia representar esse mapa em um diagrama no computador e fornecer a distância até o destino quando dirigindo de uma cidade a outra, por uma das estradas?”

Tópicos para modelagem com o uso de Programação Orientada a Problema

Aqui, modelos podem ser construídos e simulados em uma área de interesse em particular, para a qual existem ferramentas de programação de propósito especial. Por exemplo, problemas em Estatística podem ser modelados e simulados (resolvidos) com um pacote estatístico, modelos para problemas matemáticos podem ser simulados (resolvidos) com uma ferramenta matemática, tais como Maple ou Mathematica. Ferramentas genéricas, tais como planilhas eletrônicas, podem ser também usadas para executar uma simulação.

O Apêndice 2 fornece exemplos adicionais de problemas de modelagem.

Recursos

Recursos mínimos necessários
Uma linguagem de programação de uso geral, como o Turbo-Pascal. Ferramentas de software, como gerenciador de bancos de dados, processador de textos, planilha eletrônica, dependendo do tipo de problema a ser resolvido, bem como ferramentas orientadas a uma área específica, como, por exemplo, o Mathematica. Exemplos de simulações prontas devem estar disponíveis para avaliação e discussão.

Recursos extras opcionais
Digitalizadores de imagens (scanners), traçadores gráficos (plotters). Programas gráficos, pacotes estatísticos, Hypertext, Prolog.

Conexões
Fundamentos de Programação e Desenvolvimento de Software (GA1), A Informática em Outras Disciplinas (Apêndice 2).
Apêndice 4
Unidades de Nível Profissional Avançado

Este Módulo de Nível Avançado é específico para escolas secundárias que possuam hardware e software necessários, bem como professores treinados e capazes de conduzir as unidades.

Idealmente, os cursos deveriam ser construídos a partir das unidades PA1 a PA3, em acordo com universidades e instituições de nível superior, para que os créditos avançados obtidos fossem direcionados para um curso superior em ciência da computação.

Objetivos

Os estudantes deverão ser capazes de:
1. planejar, projetar, construir e implementar, metódicamente, sistemas aplicativos relativamente simples, com a ajuda de ferramentas orientadas a problemas;
2. identificar problemas envolvidos no gerenciamento de projeto.

Ao invés de estudar as unidades PA1, PA2 e PA3 em sequência, a unidade PA3 deve ser usada como contexto no qual os objetivos das unidades PA1 e PA2 podem ser atingidos.
Diferentes países estarão em diferentes fases de desenvolvimento:
Fase de Comunicação (páginas 9, 20, 21)
Módulo Profissional Avançado

UNIDADE PA1 - SISTEMAS DE INFORMAÇÕES COMERCIAIS

Esta unidade pressupõe que a competência no uso dos sistemas de computação e as habilidades de programação já tenham sido desenvolvidos nas Unidades P1 e P2.

Objetivo geral da unidade

Os estudantes deverão ser capazes de planejar, projetar, implementar e implantar metodicamente sistemas de informação relativamente simples, com o uso de ferramentas orientadas a problema.

1. PLANEJAMENTO DA INFORMAÇÃO

Objetivo

Os estudantes deverão ser capazes de usar métodos formais de análise de fluxo de dados para identificar os requisitos de um sistema de informações existente.

Contexto

Os alunos deverão ser capazes de relacionar a atividade de programação com o mundo real, especialmente, o mundo onde se pode encontrar emprego. A relevância do material irá enfatizar o valor do curso e torná-lo mais interessante, tanto para alunos quanto para professores.

Conteúdo

Os alunos analisarão casos simples como, por exemplo, um depósito ou um escritório de contabilidade, os quais são descritos pelas informações disponibilizadas. O estudo de caso é construído de tal forma que nenhuma técnica avançada é necessária. As técnicas utilizadas serão baseadas em diagramas.

Os estudantes irão trabalhar em grupos, usando diferentes métodos para coletar dados, como entrevistas e questionários. Os formulários e outros documentos usados na organização do estudo de caso que serão analisados como fontes de informação acuradas.

As seguintes atividades de estudo são parte da fase de Planejamento de Informação na unidade:

a) elaboração do croqui do fluxo de dados dentro da organização da;

b) quantificar o volume do fluxo de dados dentro da organização;

c) avaliar a velocidade do fluxo de dados na organização;

d) especificar um modelo relacional;

e) identificar as funções a serem fornecidas aos empregados pelo sistema de informação.
2. Projeto

Objetivo

Os estudantes deverão ser capazes de desenvolver o projeto de um banco de dados simples com um número limitado de funções de entrada, recuperação, alteração e apresentação de dados.

Contexto

O estudo de caso deve requerer apenas poucas funções para serem especificadas e a interface com o usuário deve ser simples e padronizada. O professor poderá desempenhar o papel coletivo dos usuários.

Conteúdo

Durante o projeto do banco de dados, os alunos deverão proceder com meticulosidade e detalhamento na especificação da estrutura global, na especificação das variáveis e na relação entre os dados que serão utilizados. É necessária a revisão das descrições com os usuários para assegurar-se de que as especificações geradas são abrangentes e apropriadas.

As seguintes atividades de estudo são parte da Fase de Projeto nesta unidade:

a) especificar a estrutura do banco de dados;

b) especificar amostras de dados a serem inseridos no banco de dados;

c) especificar as funções necessárias e a interface com o usuário;

d) projetar um programa pequeno, em termos de banco de dados, das funções e da interface.

3. Implementação

Objetivos

Os estudantes deverão ser capazes de implementar e testar o programa projetado em um computador.

Contexto

Os alunos irão normalmente usar um banco de dados programável do tipo dBase ou uma linguagem de programação de uso geral estruturada, de preferência com uma biblioteca ampla de funções de banco de dados pré-programadas.

Conteúdo

Antes da execução inicial do programa com dados de teste, os alunos necessitarão estabelecer critérios a serem usados na avaliação, no teste de especificações e na codificação. Uma documentação apropriada do sistema será extremamente útil para auxiliar os alunos a encontrar as fontes de erros.

As seguintes atividades de estudo são parte da Fase de Implementação nesta unidade:

a) transformar o programa projetado em um programa real;

b) especificar critérios de testes para o programa;

c) executar o programa com massa de dados de teste;

d) testar e verificar o código;

e) identificar as áreas com problemas e providenciar as soluções.
4. IMPLANTAÇÃO NA ORGANIZAÇÃO

Objetivo

Os estudantes deverão desenvolver a sensibilidade para os problemas associados com a implantação de um sistema de informações em uma organização.

Contexto

As diferentes funções empregadas pela organização no estudo de caso devem ser desempenhadas pelos estudantes. O professor poderá supervisionar o andamento e o papel desempenhado, ajudando na identificação dos problemas.

Conteúdo

Os estudantes terão os seus projetos e as especificações de seus programas validados com respeito às situações da vida real. Eles irão categorizar os problemas em classes: modelo de dados, especificação, funções e interface. O professor chamará a atenção para a importância da documentação.

As seguintes atividades de estudo são parte da Fase de Implantação nesta unidade:

a) implantar o sistema de informações em uma organização que se comporte como no mundo real;

b) identificar problemas com o uso do sistema;

c) sugerir soluções práticas para esses problemas.
5. USO NA ORGANIZAÇÃO

Objetivo
Os estudantes devem ser capazes de avaliar a efetividade da execução de seus programas para a organização.

Contexto
Os alunos irão executar o sistema simulando a organização envolvida. A habilidade técnica dos estudantes será colocada em teste em um ambiente semelhante ao da vida real, além de oferecer aos alunos a oportunidade de avaliarem às suas habilidades na identificação das capacidades e limitações de seu sistema.

Conteúdo
Usando especificações de dados, os alunos avaliarão as capacidades e limitações de seu sistema. Erros de interface de hardware e de software terão de ser corrigidos, aprimorando o projeto.

As seguintes atividades de estudo são parte do Uso na Organização nesta unidade: a) monitorar a eficiência do sistema; b) avaliar as capacidades e as limitações de seus sistemas no tratamento das atividades na organização.

Recursos
A documentação de sistemas previamente desenvolvidos pode ser colocada à disposição dos estudantes. Embora seja mais próximo às metas de estudantes universitários, um bom livro de referência em Desenvolvimento de Sistemas poderá ser de grande valia como material de apoio. Um banco de dados como dBase ou uma linguagem de programação estruturada de uso geral, com uma biblioteca abrangente de funções de banco de dados pré-programadas, também deverá ser disponibilizado aos alunos.

Conexões
Trabalhando com Bancos de Dados (C6); Projeto e Uso de Bancos de Dados (E1).
UNIDADE PA2 - SISTEMAS DE CONTROLE DE PROCESSOS

Esta unidade pressupõe que a competência no uso dos sistemas de computação e as habilidades de programação já tenham sido desenvolvidas nas unidades P1 e P2.

Objetivo

Os estudantes deverão ser capazes de planejar, projetar, implementar e implantar, metodicamente, sistemas de controle de processos relativamente simples, com o uso de ferramentas orientadas a problema.

1. PLANEJAMENTO DO CONTROLE DE PROCESSOS

Objetivo

Os estudantes deverão ser capazes de identificar os requisitos de sistemas técnicos que controlem ou automatizem processos dentro de algum ambiente.

Contexto

Os alunos desenvolverão a consciência das várias funções dos sistemas de controle necessárias para o monitoramento de sistemas técnicos dentro das organizações. Após isso, eles trabalharão em um estudo de caso relacionado com um processo de controle simples, tal como um robô.

Conteúdo

As seguintes atividades de estudo são parte da Fase de Planejamento desta unidade:

a) usar um sistema de controle existente para monitorar sistemas técnicos;
b) especificar os problemas dentro de um ambiente técnico dado;
c) identificar os requisitos de um sistema técnico de controle, em um dado ambiente;
d) identificar as entradas e saídas de dados que são necessárias para o controle do sistema considerado;
e) especificar as funções necessárias para controlar o sistema em consideração.

2. PROJETO DO SISTEMA

Objetivo

Os estudantes deverão ser capazes de projetar sistemas simples que controlem e monitorem processos técnicos.

Contexto

Como preparação para o mundo profissional, os alunos deverão ser capazes de analisar estudos de caso simples relacionados com dispositivos simples, tal como um robô. Eles devem também possuir a habilidade de efetuar projetos e melhorias em operações técnicas do sistema de controle.

Conteúdo

Usando um estudo de caso, os alunos desenvolverão técnicas de construção de programa que suporte um sistema existente que opere eficientemente. O estudo de caso deve ser limitado ao uso de algoritmos procedurais sequenciais simples.
As seguintes atividades de estudo são parte da Fase de Projeto de Sistema desta unidade:

a) produzir as especificações técnicas dos procedimentos necessários;
b) projetar os procedimentos do sistema de controle.

3. IMPLEMENTAÇÃO

Objetivo

Os estudantes deverão ser capazes de programar rotinas simples para controle de processos.

Contexto

Os alunos deverão ser capazes de traduzir os procedimentos projetados em um programa para um ambiente de programação orientado a problema (por exemplo, uma linguagem de controle de robô) ou para uma linguagem de programação de propósito geral, com uma razoável biblioteca de procedimentos de controle predefinidos.

Conteúdo

As seguintes atividades de estudo são parte da Fase de Concepção desta unidade:

a) construir pequenos programas projetados para suporte às operações de controle;
b) especificar critérios de testes para os programas;
c) executar o programa com a massa de dados de teste;
d) testar e verificar o código;
e) identificar as áreas com problemas e providenciar soluções.

4. IMPLANTAÇÃO NO AMBIENTE

Objetivo

Os estudantes deverão desenvolver a capacidade de reconhecimento dos problemas associados à implantação de sistemas de controle em um ambiente (organizacional ou técnico).

Objetivos secundários

Os estudantes deverão ser capazes de:

1. identificar qualquer problema técnico associado com a implantação de programas de sistemas de controle;
2. listar os problemas relativos às interfaces de hardware e software.

Contexto

Usando a vida real e ambientes de estudo de caso, os alunos serão capazes de avaliar e validar as especificações, o projeto e o código dos seus programas. Por exemplo, o robô controlado pode ser parte de uma linha de produção. A operação de uma linha de produção pode ser simulada pelos estudantes.

Conteúdo

Os estudantes terão os seus projetos e especificações de programas validados com respeito as situações encontradas na vida real. Eles classificaram os problemas em: dados, especificação, funções de controle e interface. O professor deve chamar a atenção para a importância da documentação.

As seguintes atividades de estudo são parte da fase de implantação nesta unidade:

a) implantar o sistema de controle dentro de um ambiente que se compõe como no mundo real;
b) identificar problemas com o uso do sistema;
c) sugerir soluções práticas para esses problemas.
UNIDADE PA3 - GERENCIAMENTO DE PROJETOS

Objetivo

Os estudantes devem estar cientes das principais variáveis que influenciam o progresso e o sucesso de um projeto, devendo ser capazes de planejar atividades de grupo, dentro de um dado prazo de tempo, não muito extenso.

Objetivos secundários

Os estudantes deverão ser capazes de:
1. identificar os objetivos de um projeto e todas as variáveis (sociais, políticas, financeiras, econômicas, culturais e de recursos humanos) que têm maior possibilidade de afetar a implementação do projeto;
2. planejar as atividades da equipe e usar ferramentas gráficas de planejamento.

1. FASE DE PLANEJAMENTO DO PROJETO

Objetivo

Os estudantes deverão ser capazes de identificar os objetivos do projeto e saber avaliar as variáveis que podem afetar o sucesso da implementação.

Contexto

O trabalho em equipe é essencial no ambiente da moderna tecnologia de informação. Os alunos deverão trabalhar em um projeto, como um grupo na fase de planejamento (ver também as unidades PA1 e PA2). Deve estar bem claro que os estudantes compreendam e apreciem seus respectivos papéis como membros da equipe.

Conteúdo

Os objetivos e os parâmetros do projeto têm de ser definidos com a certeza de que todas as variáveis relevantes foram consideradas nos estágios apropriados do projeto. Os alunos devem ser avisados de que uma pesquisa de mercado deve ser empreendida, como forma de assegurar que as decisões que afetam o projeto são baseadas em informação de qualidade.

Objetivos secundários

Os estudantes deverão ser capazes de, como parte do processo de planejamento:
a) identificar os objetivos do projeto a ser implementado;
b) definir os objetivos em termos operacionais;
c) identificar as variáveis sociais, políticas, financeiras, econômicas, culturais e de recursos humanos que possam vir a influenciar o projeto.
2. FASE DE CONCEPÇÃO E IMPLEMENTAÇÃO DO PROJETO

Objetivo

Os estudantes deverão ser capazes de planejar as atividades em equipe e utilizar ferramentas gráficas simples de planejamento.

Contexto

No mundo real, ter os melhores planos não significa nada se você não pode “vendê-los” dentro da organização. Os alunos poderão fazer apresentações simuladas de seus projetos para as suas respectivas equipes, enquanto outro grupo os avalia, apontando o que eles vêem como problemas, pedindo à equipe que está fazendo a apresentação para que justifique suas escolhas e estratégias adotadas para o desenvolvimento posterior do projeto.

Conteúdo

As seguintes atividades de estudo são parte da Fase de Concepção e da Fase de Implementação:

a) identificar todos os resultados essenciais do projeto;

b) quantificar os resultados em termos de tempo e recursos materiais, financeiros e humanos;

c) planejar a aplicação de recursos com uma ferramenta simples de planejamento gráfico.

3. FASE DE IMPLANTAÇÃO DO PROJETO

Objetivo

Os estudantes deverão ser capazes de relatar a qualidade dos resultados do projeto nas Fases de Planejamento e Implementação, bem como no monitoramento do projeto durante essas duas fases.

Contexto

No mundo real, nós aprendemos e fazemos progressos pela análise das partes boas e ruins de cada projeto, planejando a reutilização das boas e evitando as ruins no futuro. Os alunos podem discutir, sob a direção do professor, como cada variável identificada afetou a implementação do projeto e o que pode ser feito para minimizar os efeitos negativos. Cada equipe deve apresentar um diagrama abrangente do que eles propõem que seja feito.

Conteúdo

As seguintes atividades de estudo são parte da Fase de Implantação:

a) coleccionar dados relevantes para a qualidade da implantação do projeto;

b) identificar os fatores que influenciam o projeto adversamente;

c) sugerir o que poderia ter sido feito para aumentar a eficiência do projeto.
Apêndice 5
Bibliografia

Para a maioria das unidades, livros podem ser encontrados em diversas línguas, nos quais a unidade é trabalhada em detalhes como material de ensino. Tais livros podem oferecer orientação para escritores e livros-textos que implementem unidades do currículo, direcionadas para sua situação local.

Muitos textos gerais, tratando internacionalmente dos problemas identificados e soluções associadas com a Informática e a Tecnologia da Informação na Educação Secundária são regularmente produzidos pela Federação Internacional para Processamento de Informação (International Federation for Information Processing - IFIP), Comissão Técnica 3, Grupo de Trabalho 3.1. Os textos mais recentes e relevantes disponíveis são:

Guias de Boas Práticas

A série Guidelines for Good Practice, produzida pelo Grupo de Trabalho 3.1 da IFIP, oferece monografias em Informática e Tecnologia da Informação na Educação Secundária, contendo bibliografias extensas. As monografias abaixo podem ser obtidas por meio do secretariado da IFIP, no endereço IFIP Secretariat, 19 Place Longmalle, CH-1204, Genebra, Suíça.

Traduções e copyright

Este currículo foi desenvolvido para ser usado por muitos países, em várias circunstâncias. Por seu nível descritivo, os autores de livros-textos, baseados neste currículo, estarão aptos a produzir textos de ensino adequados à situação local. A Unesco pode oferecer ajuda por meio do estímulo à conversão deste currículo em textos de ensino adequados às condições locais.

O currículo foi escrito originalmente em inglês. Com o intuito de alcançar a comunidade mundial, são necessárias traduções para, pelo menos, chinês, francês, russo e espanhol. Deve-se ter o cuidado de envolver os especialistas de direito em qualquer tradução. Tais traduções terão de ser autorizadas pela Unesco.

As ilustrações podem ser reproduzidas, na condição de que sua fonte original seja citada.
Tecnologia da informação, que combina tecnologia da informática a outras tecnologias, é um dos elementos básicos para a construção de uma sociedade moderna. E todos os jovens necessitam de conceitos básicos em tecnologia da informação para preparar seu futuro, assegurar melhores empregos e contribuir com o desenvolvimento do País.

A UNESCO encomendou a especialistas de alto nível, de diversos países, a elaboração de um currículo para as escolas. O resultado é um conjunto de propostas práticas e realistas, apresentadas de forma modular. Seus componentes podem ser selecionados para atender a objetivos de diversas fases de aprendizagem. Podem também servir de base à produção de material didático adaptado a diferentes culturais e circunstâncias.

Os módulos fundamentais, destinados à alfabetização em computação, indicam como orientar os alunos para serem capazes de manipular o equipamento básico (hardware) e os recursos dos programas (software); resolver questões rotineiras e identificar aspectos sociais, econômicos e éticos da tecnologia da informação.

Módulos opcionais e avançados dão sugestões para o uso desses conhecimentos em muitas aplicações de interesse educacional, profissional ou pessoal.